Thực hành 4 trang 25 SGK Toán 10 Chân trời sáng tạo tập 1
Xác định các tập hợp sau đây:
a) \((1;3) \cup [ - 2;2]\)
b) \(( - \infty ;1) \cap [0;\pi ]\)
c) \([\frac{1}{2};3){\rm{\backslash }}(1; + \infty )\)
d) \({C_\mathbb{R}}[ - 1; + \infty )\)
Hướng dẫn giải chi tiết
Hướng dẫn giải
Sử dụng các tập con của tập số thực sau đây (a và b là các số thực, a < b)
Lời giải chi tiết
a) Để xác định tập hợp \(A = (1;3) \cup [ - 2;2]\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(A = [ - 2;3)\)
b) Để xác định tập hợp \(B = ( - \infty ;1) \cap [0;\pi ]\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(B = [0;1)\)
c) Để xác định tập hợp \(C = [\frac{1}{2};3){\rm{\backslash }}(1; + \infty )\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(C = [\frac{1}{2};1]\)
d) Để xác định tập hợp \(D = {C_\mathbb{R}}[ - 1; + \infty )\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(D = ( - \infty ; - 1)\)
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Hoạt động khám phá 2 trang 23 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Thực hành 3 trang 24 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 25 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 25 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 25 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 25 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 25 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 25 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 16 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 16 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 16 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 8 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 9 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 10 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 11 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
-
Xác định tập hợp sau: \(\left( { - \infty ;0} \right) \cup \left[ {0; + \infty } \right)\)
bởi hà trang 04/11/2022
Theo dõi (0) 1 Trả lời -
Xác định tập hợp sau: \(\left( { - \infty ;0} \right) \cup \left( { - 2;2} \right]\)
bởi Tran Chau 03/11/2022
Theo dõi (0) 1 Trả lời