OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 4 trang 18 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 4 trang 18 SGK Toán 10 Chân trời sáng tạo tập 2

Giải các phương trình sau:

a) \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \)

b) \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\)

c) \(\sqrt {4{x^2} + x - 1}  = x + 1\)

d) \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \)

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài 4

Phương pháp giải

Bước 1: Bình phương hai vế để làm mất dấu căn, chuyển vế và rút gọn

Bước 2: Giải phương trình bậc hai vừa nhân được

Bước 3: Thử lại nghiệm vừa tìm được và kết luận

Lời giải chi tiết

a) \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \)

\(\begin{array}{l} \Rightarrow {x^2} - 7x =  - 9{x^2} - 8x + 3\\ \Rightarrow 10{x^2} + x - 3 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{5}\) và \(x = \frac{1}{2}\)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \) thì ta thấy chỉ có nghiệm \(x =  - \frac{3}{5}\) thỏa mãn phương trình

Vậy nghiệm của phương trình là \(x =  - \frac{3}{5}\)

b) \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\)

\(\begin{array}{l} \Rightarrow \sqrt {{x^2} + x + 8}  = \sqrt {{x^2} + 4x + 1} \\ \Rightarrow {x^2} + x + 8 = {x^2} + 4x + 1\\ \Rightarrow 3x = 7\\ \Rightarrow x = \frac{7}{3}\end{array}\)

Thay \(x = \frac{7}{3}\) vào phương trình \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{7}{3}\)

c) \(\sqrt {4{x^2} + x - 1}  = x + 1\)

\(\begin{array}{l} \Rightarrow 4{x^2} + x - 1 = {\left( {x + 1} \right)^2}\\ \Rightarrow 4{x^2} + x - 1 = {x^2} + 2x + 1\\ \Rightarrow 3{x^2} - x - 2 = 0\end{array}\)

\( \Rightarrow x =  - \frac{2}{3}\) và \(x = 1\)

Thay hai nghiệm trên vào phương trình \(\sqrt {4{x^2} + x - 1}  = x + 1\) ta thấy cả hai nghiệm đều thỏa mãn

Vậy nghiệm của phương trình trên là \(x =  - \frac{2}{3}\) và \(x = 1\)

d) \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \)

\(\begin{array}{l} \Rightarrow 2{x^2} - 10x - 29 = x - 8\\ \Rightarrow 2{x^2} - 11x - 21 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{2}\) và \(x = 7\)

Thay hai nghiệm \(x =  - \frac{3}{2}\) và \(x = 7\) vào phương trình  \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) ta thấy cả hai đều không thảo mãn phương trình

Vậy phương trình \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) vô nghiệm

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 4 trang 18 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Giải bài 2 trang 18 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 3 trang 18 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 5 trang 18 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 6 trang 18 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 7 trang 18 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 8 trang 18 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 9 trang 18 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 1 trang 19 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 2 trang 19 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 3 trang 19 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 4 trang 19 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 5 trang 20 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 6 trang 20 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 7 trang 20 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 8 trang 20 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 9 trang 20 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 10 trang 20 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 11 trang 21 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 12 trang 21 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 1 trang 21 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 2 trang 21 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 3 trang 21 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 4 trang 22 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 5 trang 22 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 6 trang 22 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 7 trang 22 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 8 trang 22 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 9 trang 23 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 10 trang 23 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

NONE
OFF