Bài tập 24 trang 24 SGK Hình học 10 NC
Cho tam giác ABC và điểm G. Chứng minh rằng
a) Nếu \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \) thì G là trọng tâm tam giác ABC;
b) Nếu có điểm O sao cho \(\overrightarrow {OG} = \frac{1}{3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\) thì G là trọng tâm tam giác ABC.
Hướng dẫn giải chi tiết
a) Gọi G1 là trọng tâm tam giác ABC.
Từ đó, ta có \({\overrightarrow {{G_1}A} + \overrightarrow {{G_1}B} + \overrightarrow {{G_1}C} = \overrightarrow 0 }\).
Theo giả thiết, \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
\(\begin{array}{l}
\Rightarrow \overrightarrow {G{G_1}} + \overrightarrow {{G_1}A} + \overrightarrow {{G_1}B} + \overrightarrow {{G_1}C} = \overrightarrow 0 \\
\Rightarrow 3\overrightarrow {G{G_1}} + \left( {\overrightarrow {{G_1}A} + \overrightarrow {{G_1}B} + \overrightarrow {{G_1}C} } \right) = \overrightarrow 0 \\
\Rightarrow 3\overrightarrow {G{G_1}} = \overrightarrow 0 \\
\Rightarrow \overrightarrow {G{G_1}} = \overrightarrow 0
\end{array}\)
\( \Rightarrow G \equiv {G_1}\)
b) Gọi G1 là trọng tâm tam giác ABC.
Từ đó, ta có \({\overrightarrow {{G_1}A} + \overrightarrow {{G_1}B} + \overrightarrow {{G_1}C} = \overrightarrow 0 }\).
\(\begin{array}{l}
\overrightarrow {OG} = \frac{1}{3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\\
= \frac{1}{3}\left( {3\overrightarrow {O{G_1}} + \overrightarrow {{G_1}A} + \overrightarrow {{G_1}B} + \overrightarrow {{G_1}C} } \right) = \overrightarrow {O{G_1}} \\
\Rightarrow G \equiv {G_1}
\end{array}\)
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.