OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giả sử có x, y là các số thực dương thỏa mãn \(xy + 1 \le x\). Tìm giá trị nhỏ nhất của biểu thức \(Q = \dfrac{{x + y}}{{\sqrt {3{x^2} - xy + {y^2}} }}\)

Giả sử có x, y là các số thực dương thỏa mãn \(xy + 1 \le x\). Tìm giá trị nhỏ nhất của biểu thức \(Q = \dfrac{{x + y}}{{\sqrt {3{x^2} - xy + {y^2}} }}\)

  bởi Thanh Truc 10/07/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Ta có: \(xy + 1 \le x,\,\,(x,y > 0) \Leftrightarrow y + \dfrac{1}{x} \le 1\)

    Áp dụng BĐT Cô si, ta có:  \(y + \dfrac{1}{x} \ge 2\sqrt {y.\dfrac{1}{x}}  = 2\sqrt {\dfrac{y}{x}}  \)

    \(\Rightarrow 1 \ge 2\sqrt {\dfrac{y}{x}}  \Leftrightarrow 0 < \dfrac{y}{x} \le \dfrac{1}{4}\)

    \(Q = \dfrac{{x + y}}{{\sqrt {3{x^2} - xy + {y^2}} }} = \dfrac{{1 + \dfrac{y}{x}}}{{\sqrt {3 - \dfrac{y}{x} + \dfrac{{{y^2}}}{{{x^2}}}} }}\) . Đặt \(\dfrac{y}{x} = a,\,\,0 < a \le \dfrac{1}{4}\), ta có:

    \(Q = \dfrac{{1 + a}}{{\sqrt {3 - a + {a^2}} }} = \sqrt {\dfrac{{{a^2} + 2a + 1}}{{{a^2} - a + 3}}} \) , \(0 < a \le \dfrac{1}{4}\)

    Ta chứng minh: \(\dfrac{{{a^2} + 2a + 1}}{{{a^2} - a + 3}} \le \dfrac{5}{9}\,\,(*),\,\,\forall 0 < a \le \dfrac{1}{4}\)

    \(\left( * \right) \Leftrightarrow 9({a^2} + 2a + 1) \le 5({a^2} - a + 3)\) ( do \({a^2} - a + 3 > 0,\,\,\forall a\))

    \( \Leftrightarrow 4{a^2} + 23a - 6 \le 0 \)

    \(\Leftrightarrow 4{a^2} - a + 24a - 6 \le 0\)

    \(\Leftrightarrow a(4a - 1) + 6(4a - 1) \le 0\)

    \(\Leftrightarrow (4a - 1)(a + 6) \le 0\)

    Do \(0 < a \le \dfrac{1}{4}\) \( \Rightarrow 4a - 1 \le 0,\,\,a + 6 > 0 \Rightarrow (4a - 1)(a + 6) \le 0\)

    \( \Rightarrow \dfrac{{{a^2} + 2a + 1}}{{{a^2} - a + 3}} \le \dfrac{5}{9}\,\,,\,\,\forall 0 < a \le \dfrac{1}{4}\)

    \( \Rightarrow Q = \sqrt {\dfrac{{{a^2} + 2a + 1}}{{{a^2} - a + 3}}}  \le \sqrt {\dfrac{5}{9}}  = \dfrac{{\sqrt 5 }}{3}\),\(\forall 0 < a \le \dfrac{1}{4}\)

    Vậy, \({Q_{max}} = \dfrac{{\sqrt 5 }}{3}\) khi và chỉ khi \(a = \dfrac{1}{4} \Leftrightarrow \left\{ \begin{array}{l}\dfrac{y}{x} = \dfrac{1}{4}\\y + \dfrac{1}{x} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = \dfrac{1}{2}\end{array} \right.\)

      bởi Phan Thị Trinh 10/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF