OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh rằng EA.EB+FA.FC=DB.DC

Cho ΔABC vuông tại A. D trên cạnh huyền BC. Gọi E,F là hình chiếu vuông góc của D lên AB, AC. CMR: EA.EB+FA.FC=DB.DC

  bởi Lê Nguyễn Hạ Anh 24/01/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (2)

  • Lời giải:

    Vì tứ giác $DEAF$ có 3 góc vuông nên $DEAF$ là hình chữ nhật.

    Do đó: \(AE=DF\)

    Ta thấy \(ED\parallel AC\) (cùng vuông góc với $AB$) nên áp dụng định lý Ta-let:

    \(\frac{BE}{EA}=\frac{BD}{DC}\)

    Lại có: \(DF\parallel BA\) (cùng vuông góc với $AC$) nên áp dụng định lý Ta-let:

    \(\frac{AF}{FC}=\frac{BD}{DC}\)

    Vậy \(\frac{BE}{EA}=\frac{AF}{FC}=\frac{BD}{DC}=t\)

    Khi đó:

    \(EA.EB+FA.FC=EA.tEA+tFC.FC=t(EA^2+FC^2)\)

    \(=t(DF^2+FC^2)=tDC^2\) (Pitago)

    \(=(tDC).DC=BD.DC\)

    Ta có đpcm.

      bởi Phạm Huy 24/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF