Ôn tập Toán 9 Chương 2 Hàm số bậc nhất
Dưới đây là tài liệu Ôn tập Toán 9 Chương 2 Hàm số bậc nhất số thực được biên soạn và tổng hợp đầy đủ, bám sát chương trình SGK. Tại đây, hoc247 tóm tắt lại những kiến thức quan trọng về hàm số bậc nhất và bài tập trọng tâm ở Chương 2. Bộ tài liệu cung cấp nội dung các bài học, hướng dẫn giải bài tập trong SGK, phần trắc nghiệm online có đáp án và hướng dẫn giải cụ thể, chi tiết nhằm giúp các em có thể tham khảo và so sánh với đáp án trả lời của mình. Bên cạnh đó các đề kiểm tra Chương 2 được tổng hợp và sưu tầm từ nhiều trường THCS khác nhau, các em có thể tải file về tham khảo cũng như làm bài thi trực tuyến trên hệ thống để được chấm điểm trực tiếp, từ đó đánh giá được năng lực của bản thân để có kế hoạch ôn tập hiệu quả. Hoc247 hi vọng đây là tài liệu hữu ích giúp các em thuận tiện trong việc ôn tập. Mời các em cùng tham khảo
Đề cương Ôn tập Toán 9 Chương 2
A. Kiến thức cần nhớ
1. Khái niệm
Hàm số bậc nhất là hàm số được viết dưới dạng \(y=ax+b(a\neq 0)\)
Hàm số đồng biến trên \(\mathbb{R}\) khi a dương.
Hàm số nghịch biến trên \(\mathbb{R}\) khi a âm.
2. Đồ thị hàm số \(y=ax+b(a\neq 0)\)
Đồ thị hàm số bậc nhất là một đường thẳng:
Cắt trục tung tại điểm có tung độ bằng b
Song song với đường thẳng \(y=ax\), và cũng chính là đường thẳng \(y=ax\) nếu \(b=0\)
3. Vị trí tương đối của hai đường thẳng
Chúng ta có 3 vị trí của hai đường thẳng \(y=ax+b;y=a'x+b'(a;a'\neq 0)\)
Song song: \(\left\{\begin{matrix} a=a'\\ b\neq b' \end{matrix}\right.\)
Trùng nhau: \(\left\{\begin{matrix} a=a'\\ b= b' \end{matrix}\right.\)
Cắt nhau: \(a\neq a'\)
Lưu ý: Đối với vị trí cắt nhau, ta cũng có trường hợp đó là hai đường thẳng vuông góc với nhau
khi đó: \(a.a'=-1\)
4. Hệ số góc
Về phương trình đường thẳng dạng chuẩn đó là \(y=ax+b(a\neq 0)\), ta có hệ số góc của phương trình này chính là \(a\)
Đôi khi, phương trình đường thẳng được viết dưới dạng \(ax+by+c=0\)
Thì ta sẽ biến đổi một chút thành dạng chuẩn:
\(ax+by+c=0(b\neq 0)\)\(\Leftrightarrow by=-ax-c\)\(\Leftrightarrow y=-\frac{a}{b}x-\frac{c}{b}\); hệ số góc của phương trình này chính là \(\frac{-a}{b}\).
B. Bài tập minh họa
Bài 1: Cho hàm số \(y=ax-2\). Xác định hệ số góc của hàm số đó, biết rằng hàm số đi qua điểm \(A(2;4)\). Vẽ đồ thị hàm số đó trên trục tọa độ.
Hướng dẫn: Do hàm số đi qua điểm \(A(2;4)\) nên tọa độ của điểm A cũng thuộc đồ thị hàm số.
Thế hoành độ và tung độ của điểm A vào hàm số, ta được:
\(4=a.2-2\)\(\Leftrightarrow a=3\)
Vậy, hàm số được cho có dạng: \(y=3x-2\) với hệ số góc \(a=3\)
Vẽ đồ thị:
Hàm số qua các điểm: \(A(2;4)\); \(B(0;-2)\)
Bài 2:
a) Với giá trị nào của m thì hàm số \(y=(m-2)x-6\) đồng biến trên \(\mathbb{R}\)?
b) Với các giá trị nào của n thì hàm số \(y=(4-n)x+2017\) nghịch biến trên \(\mathbb{R}\)?
Hướng dẫn:
a) Để hàm số \(y=(m-2)x-6\) đồng biến trên \(\mathbb{R}\) thì hệ số góc \(a>0\)
Tức là \(m-2>0\Leftrightarrow m>2\)
Vậy \(m>2\) thì hàm số đồng biến trên \(\mathbb{R}\)
b) Để hàm số \(y=(4-n)x+2017\) nghịch biến trên \(\mathbb{R}\) thì hệ số góc \(a<0\)
Tức là \(4-n<0\Leftrightarrow n>4\)
Vậy \(n>4\) thì hàm số nghịch biến trên \(\mathbb{R}\)
Bài 3: Xác định các hệ số a, b để hai hàm số sau: \(y=ax+(b+3)\) và \(y=(4-a)x+(b+10)\)
a) Vuông góc
b) Song song
c) Trùng nhau
Hướng dẫn:
Để các hàm số trên là hàm số bậc nhất, trước hết hệ số góc khác 0
\(\Leftrightarrow \left\{\begin{matrix} a\neq 0\\ a\neq 4 \end{matrix}\right.\)
a) Để hai hàm số vuông góc với nhau, ta có:
\(a(4-a)=-1\Leftrightarrow a^2-4a-1=0\)
\(\Leftrightarrow a=2+\sqrt{5}\) hoặc \(a=2-\sqrt{5}\) thì hai đường thẳng vuông góc với nhau.
b) Để hai hàm số song song với nhau, ta có:
\(\left\{\begin{matrix} a=4-a\\ b+3\neq b+10 \end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} a=2\\ 0.b\neq 7 \end{matrix}\right.\)
Vậy \(a=2\) thì hai đường thẳng song song với nhau.
c) Để hai hàm số trùng nhau, ta có:
\(\left\{\begin{matrix} a=4-a\\ b+3=b+10 \end{matrix}\right.\)
Không thể làm cho \(b+3=b+10\) nên hai đường thẳng này không thể trùng nhau với mọi hệ số a, b.
Bài 4: Vẽ các đồ thị sau trên cùng một mặt phẳng tọa độ
\(y=x+2\)
\(y=2x-1\)
\(y=3-x\)
Chứng tỏ rằng tam giác tạo bởi 3 điểm là 3 tọa độ giao nhau của 3 đường thẳng trên là một tam giác vuông.
Hãy dùng đồ thị kiểm chứng lại.
Hướng dẫn:
Gọi đồ thị \(y=x+2\) là \(d_1\), \(y=2x-1\) là \(d_2\), \(y=3-x\) là \(d_3\)
Hàm số \(d_1\) qua \(A(0;2);B(1;3)\)
Hàm số \(d_2\) qua \(C(0;-1);D(2;3)\)
Hàm số \(d_3\) qua \(E(0;3);F(3;0)\)
Vẽ đồ thị:
Dễ thấy bằng đồ thị, Tam giác MNP vuông tại N.
Vì N là giao điểm của \(d_1\) và \(d_3\)
Ta có tích hệ số góc của \(d_1\) và \(d_3\) là \(1.(-1)=-1\)
Bài 5: Vẽ đường thẳng \(y=6-x\) trên mặt phẳng tọa độ.
Chứng tỏ đường thẳng tạo với hai trục tọa độ và gốc tọa độ thành một tam giác vuông cân. Tính chu vi và diện tích của tam giác vuông cân ấy.
Hướng dẫn:
Đường thẳng \(y=6-x\) đi qua các điểm \(A(1;5), B(2;4)\)
Chúng ta tìm điểm cắt trục tung của đường thẳng đó là điểm \(C(0;6)\)
Điểm cắt trục hoành là điểm \(D(6;0)\)
Ta có độ lớn đại số của \(OC=OD=6(dvdd)\)
Vậy tam giác OCD vuông cân tại O.
Áp dụng định lý Pytago vào tam giác vuông cân OCD, ta tìm được \(CD=\sqrt{OD^2+OC^2}=\sqrt{6^2+6^2}=6\sqrt{2}(dvdd)\)
Vậy, Chu vi của tam giác OCD là \(OC+OD+CD=12+6\sqrt{2}(dvdd)\)
Diện tích tam giác OCD là \(\frac{1}{2}OD.OC=\frac{1}{2}.6.6=18(dvdt)\)
Trắc nghiệm Toán 9 Chương 2
Đây là phần trắc nghiệm online theo từng bài học có đáp án và hướng dẫn giải chi tiết.
- Trắc nghiệm Toán 9 Chương 2 Bài 1
- Trắc nghiệm Toán 9 Chương 2 Bài 2
- Trắc nghiệm Toán 9 Chương 2 Bài 3
- Trắc nghiệm Toán 9 Chương 2 Bài 4
- Trắc nghiệm Toán 9 Chương 2 Bài 5
- Trắc nghiệm ôn tập Chương 2 Toán 9
Đề kiểm tra Toán 9 Chương 2
Đề kiểm tra trắc nghiệm online Chương 2 Toán 9 (Thi Online)
Phần này các em được làm trắc nghiệm online trong vòng thời gian quy định để kiểm tra năng lực và sau đó đối chiếu kết quả và xem đáp án chi tiết từng câu hỏi.
- 20 câu trắc nghiệm ôn tập Chương 2 Hàm số bậc nhất Đại số 9
- Đề kiểm tra 1 tiết Chương 2 Đại số 9 trường THCS Đồi Ngô
- Đề kiểm tra 1 tiết Chương 2 Đại số 9 năm 2018 Trường THCS Phổ Quang
Đề kiểm tra Chương 2 Toán 9 (Tải File)
Phần này các em có thể xem online hoặc tải file đề thi về tham khảo gồm đầy đủ câu hỏi và đáp án làm bài.
Lý thuyết từng bài chương 2 và hướng dẫn giải bài tập SGK
Lý thuyết các bài học Toán 9 Chương 2
- Toán 9 Bài 1: Nhắc lại và bổ sung các khái niệm về hàm số
- Toán 9 Bài 2: Hàm số bậc nhất
- Toán 9 Bài 3: Đồ thị của hàm số y = ax + b (a ≠ 0)
- Toán 9 Bài 4: Đường thẳng song song và đường thẳng cắt nhau
- Toán 9 Bài 5: Hệ số góc của đường thẳng y = ax + b (a ≠ 0)
Hướng dẫn giải bài tập SGK Toán 9 Chương 2
- Giải bài tập Toán 9 Chương 2 Bài 1
- Giải bài tập Toán 9 Chương 2 Bài 2
- Giải bài tập Toán 9 Chương 2 Bài 3
- Giải bài tập Toán 9 Chương 2 Bài 4
- Giải bài tập Toán 9 Chương 2 Bài 5
Trên đây là Ôn tập Toán 9 Chương 2 Hàm số bậc nhất. Hy vọng với tài liệu này, các em sẽ ôn tập tốt và củng cố kiến thức một cách logic. Để thi online và tải file về máy các em vui lòng đăng nhập vào trang hoc247.net và ấn chọn chức năng "Thi Online" hoặc "Tải về". Ngoài ra, các em còn có thể chia sẻ lên Facebook để giới thiệu bạn bè cùng vào học, tích lũy thêm điểm HP và có cơ hội nhận thêm nhiều phần quà có giá trị từ HỌC247 !