OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh rằng AC^3 = CD. BC^2

Cho tam giác ABC vuông tại A, đường cao AH, vẽ HD vuông góc AC tại D.

CMR: a) AC3 = CD. BC2

b) BH. HC=AD.AC

c)\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}+\dfrac{1}{HC^2}=\dfrac{1}{HD^2}\)

A B C D H

  bởi Phạm Hoàng Thị Trà Giang 25/01/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • a)

    \(\Delta HAC\) vuông tại H có HD là đường cao

    \(\Rightarrow HC^2=DC\times AC\)

    HD // AB (cùng _I_ AC)

    \(\Rightarrow\dfrac{DC}{AC}=\dfrac{HC}{BC}\)

    \(\Rightarrow\dfrac{DC^2}{AC^2}=\dfrac{HC^2}{BC^2}\)

    \(\Rightarrow AC^2=\dfrac{DC^2\times BC^2}{HC^2}=\dfrac{DC^2\times BC^2}{DC\times AC}=\dfrac{DC\times BC^2}{AC}\)

    \(\Rightarrow AC^3=DC\times BC^2\left(\text{đ}pcm\right)\)

    b)

    \(\Delta ABC\) vuông tại A có AH là đường cao

    \(\Rightarrow AH^2=BH\times CH\) (1)

    \(\Delta HAC\) vuông tại H có HD là đường cao

    \(\Rightarrow AH^2=AD\times AC\) (2)

    (1) và (2) => đpcm

    c)

    \(\Delta HAC\) vuông tại H có HD là đường cao

    \(\Rightarrow\dfrac{1}{AH^2}+\dfrac{1}{HC^2}=\dfrac{1}{HD^2}\)

    \(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{HD^2}-\dfrac{1}{HC^2}\) (3)

    \(\Delta ABC\) vuông tại A có AH là đường cao

      bởi Phan Lê Hoài Nam 25/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF