OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh rằng 1/x^3+y^3+xyz+1/y^3+z^3+xyz+1/z^3+x^3+xyz≤1/xyz

Cho x,y,z là các số thực dương. Chứng minh rằng:

\(\dfrac{1}{x^3+y^3+xyz}+\dfrac{1}{y^3+z^3+xyz}+\dfrac{1}{z^3+x^3+xyz}\le\dfrac{1}{xyz}\)

  bởi can chu 30/01/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • do x,y,z là các số dương nên

    \(x^2-xy+y^2\ge xy\Leftrightarrow x^3+y^3\ge xy\left(x+y\right)\)

    tương tự ta cũng có : \(y^3+z^3\ge yz\left(y+z\right)\)

    \(z^3+x^3\ge zx\left(z+x\right)\)

    \(\Rightarrow\Sigma\dfrac{1}{x^3+y^3+xyz}\le\Sigma\dfrac{1}{xy\left(x+y+z\right)}=\dfrac{1}{x+y+z}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\)

    \(=\dfrac{1}{x+y+z}\left(\dfrac{x+y+z}{xyz}\right)=\dfrac{1}{xyz}\left(đpcm\right)\)

      bởi Đặng Ngọc Hùng 30/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF