OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh MH+MK có GT không đổi

Cho tam giác ABC đều cạnh a, M là 1 điểm thay đổi trên cạnh BC, H và K là hình chiếu của M trên AB và AC.

a)C/m MH+MK có GT ko đổi .

b)Xác định vị trí của M trên cạnh BC để MH.MK có giá trị lớn nhất. Tính GTLN đó (Áp dụng BĐT cô-si ó)

  bởi Tieu Dong 17/01/2019
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • A B C M H K

    a) Dễ thấy \(\Delta HBM\) và \(\Delta KCM\) là nửa các tam giác đều

    Đặt BM = x ; CM = y \(\Rightarrow x+y=a\) (không đổi)

    Ta có \(MH=sinB.BM=\frac{\sqrt{3}x}{2}\) ; \(MK=sinC.CM=\frac{\sqrt{3}y}{2}\)

    \(\Rightarrow MH+MK=\frac{\sqrt{3}}{2}\left(x+y\right)=\frac{\sqrt{3}a}{2}\) không đổi.

    b) Vì MH + MK không đổi khi M di chuyển trên BC (câu a) nên MH.MK đạt giá trị lớn nhất \(\Leftrightarrow MH=MK\)

    Theo bất đẳng thức Cosi, ta có : \(MH.MK\le\frac{\left(MH+MK\right)^2}{4}=\frac{\left(\frac{\sqrt{3}a}{2}\right)^2}{4}=\frac{3a^2}{16}\)

    Vậy Max MH.MK \(=\frac{3a^2}{16}\Leftrightarrow MH=MK\Leftrightarrow MB=MC\Leftrightarrow\)M là trung điểm của BC

      bởi Quach Tan Phat 17/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF