OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho biết hai vòi nước cùng chảy vào một bể nước cạn (không có nước) thì sau \(4\dfrac{4}{5}\) giờ đầy bể. Nếu ngay từ đầu, chỉ mở vòi thứ nhất và 9 giờ sau mới mở thêm vòi thứ hai thì phải \(\dfrac{6}{5}\) giờ nữa mới đầy bể. Hỏi nếu ngay từ đầu, chỉ mở vòi thứ hai thì phải bao lâu mới đầy bể ?

  bởi Sam sung 25/04/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Bước 1: Gọi \(x\) (giờ) là thời gian để riêng vòi thứ nhất chảy đầy bể; \(y\) (giờ) là thời gian để riêng vòi thứ hai chảy đầy bể. Điều kiện của ẩn là: \(x;y > \dfrac{{24}}{5}\).

    Khi đó, riêng vòi thứ nhất chảy trong 1 giờ thì được \(\dfrac{1}{x}\) bể.

    Riêng vòi thứ hai chảy trong 1 giờ thì được \(\dfrac{1}{y}\) bể 

    Vậy hai vòi cùng chảy từ đầu trong \(4\dfrac{4}{5}\) giờ  (tức \(\dfrac{{24}}{5}\) giờ) thì được \(\dfrac{{24}}{5}\left( {\dfrac{1}{x} + \dfrac{1}{y}} \right)\)  bể nước và đầy bể theo giả thiết ta có phương trình \(\dfrac{{24}}{5}\left( {\dfrac{1}{x} + \dfrac{1}{y}} \right) = 1 \Leftrightarrow \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{5}{{24}}\) 

    Giả thiết thứ hai có nghĩa là mở vòi thứ nhất chảy trong \(\left( {9 + \dfrac{6}{5}} \right)\) giờ cộng với vòi thứ hai chảy trong \(\dfrac{6}{5}\)  giờ nữa  thì đầy bể. Điều đó được mô tả bởi phương trình  \(\dfrac{{51}}{5}.\dfrac{1}{x} + \dfrac{6}{5}.\dfrac{1}{y} = 1\)

    Ta có hệ phương trình \(\left\{ \begin{array}{l}\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{5}{{24}}\\\dfrac{{51}}{5}.\dfrac{1}{x} + \dfrac{6}{5}.\dfrac{1}{y} = 1\end{array} \right.\)

    Bước 2: Đặt \(\dfrac{1}{x} = u;\dfrac{1}{y} = v\,\) ta có hệ phương trình bậc nhất hai ẩn \(u\) và \(v:\) \(\left\{ \begin{array}{l}u + v = \dfrac{5}{{24}}\\\dfrac{{51}}{5}u + \dfrac{6}{5}v = 1\end{array} \right.\)

    Ta giải hệ này bằng phương pháp cộng đại số

    \(\left\{ \begin{array}{l}u + v = \dfrac{5}{{24}}\\\dfrac{{51}}{5}u + \dfrac{6}{5}v = 1\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}\dfrac{6}{5}u + \dfrac{6}{5}v = \dfrac{1}{4}\\\dfrac{{51}}{5}u + \dfrac{6}{5}v = 1\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}u + v = \dfrac{5}{{24}}\\9u = \dfrac{3}{4}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}u = \dfrac{1}{{12}}\\v = \dfrac{1}{8}\end{array} \right.\,\left( {tm} \right)\)

    Trở về phương trình ban đầu, ta có \(x = \dfrac{1}{u} = 12\left( {tm} \right)\) và \(y = \dfrac{1}{v} = 8\left( {tm} \right)\)

    Bước 3: Giá trị \(x\) và \(y\) tìm được lần lượt là \(12\) và \(8.\)

    Vậy vòi thứ nhất chảy riêng trong \(12\) giờ thì đầy bể, vòi thứ hai chảy riêng trong \(8\) giờ thì đầy bể.

      bởi Nguyễn Bảo Trâm 25/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF