OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Tính thể tích của vật thể nằm giữa hai mặt phẳng \(x = 0;x = \pi\), biết rằng thiết diện của vật thể với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \(x\left( {0 \le x \le \pi } \right)\) là một tam giác đều có cạnh là \(2\sqrt {\sin x}\).

    • A. 
       \(\sqrt 3\)
    • B. 
       \(\frac{\pi }{{\sqrt 3 }}\)
    • C. 
      \(2\sqrt 3\)
    • D. 
       \(2\pi\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Bài này yêu cầu nắm vững công thức: \(V = \int\limits_a^b {S\left( x \right)dx}\)

    Gọi S(x) là diện tích của thiết diện đã cho thì:

                \(S\left( x \right) = {\left( {2\sqrt {\sin x} } \right)^2}.\frac{{\sqrt 3 }}{4} = \sqrt 3 \sin x\)

    Thể tích vật thể là:

                \(V = \int\limits_0^\pi {S\left( x \right)dx} = \int\limits_0^\pi {\sqrt 3 \sin xdx} = 2\sqrt 3\)

    Vậy đáp án đúng là C. 

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

AMBIENT-ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF