-
Câu hỏi:
Thực hiện phép tính |–3,7| + 6,3 + |–1,4| – |3,7| – |6,3| ta được kết quả là:
-
A.
–1,4;
-
B.
1,4;
-
C.
21,4;
-
D.
18,6.
Lời giải tham khảo:
Đáp án đúng: B
|–3,7| + 6,3 + |–1,4| – |3,7| – |6,3|
= –(–3,7) + 6,3 + [–(–1,4)] – 3,7 – 6,3
= 3,7 + 6,3 + 1,4 – 3,7 – 6,3
= (3,7 + 6,3) + 1,4 – (3,7 + 6,3)
= 10 + 1,4 – 10
= (10 – 10) + 1,4
= 0 + 1,4
= 1,4.
Đáp án đúng là: B.
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Trong các phát biểu sau, phát biểu nào sai về số vô tỉ?
- Giá trị của biểu thức \(\left( { - 12.} \right)\sqrt {0,36} - \left( { - 7,2} \right)\) là:
- Có bao nhiêu giá trị của x thoả mãn sau \(\sqrt {2x + 3} = 25\)?
- Thực hiện phép tính |–3,7| + 6,3 + |–1,4| – |3,7| – |6,3| ta được kết quả là:
- Điểm nào trên trục số biểu diễn giá trị x thoả mãn \(\left| x \right| = \sqrt 3 \)?
- Kết quả của phép tính \(13\frac{2}{7}:\left( {\frac{{ - 8}}{9}} \right) + 2\frac{5}{7}:\left( {\frac{{ - 8}}{9}} \right)\) là:
- Cho \(\frac{{ - 6}}{x} = \frac{9}{{ - 15}}\). Giá trị x thoả mãn là:
- Giá trị nhỏ nhất của biểu thức A = |2x – 1| + 5 là:
- Kết quả của phép tính \(0,3.\left( { - \sqrt {49} } \right) + \sqrt {0,8} .\sqrt {\frac{4}{5}} \) là:
- Khẳng định nào dưới đây thể hiện hai đại lượng tỉ lệ thuận với nhau?