-
Câu hỏi:
Phương trình \({x^4} + \left( {\sqrt {65} - \sqrt 3 } \right){x^2} + 2\left( {8 + \sqrt {63} } \right) = 0\) có bao nhiêu nghiệm?
-
A.
2
-
B.
3
-
C.
4
-
D.
0
Lời giải tham khảo:
Đáp án đúng: D
Đặt \({x^2} = t \ge 0\) ta được:
\({t^2} + \left( {\sqrt {65} - \sqrt 3 } \right)t + 2\left( {8 + \sqrt {63} } \right) = 0\)
Ta có: \(\Delta = {\left( {\sqrt {65} - \sqrt 3 } \right)^2} - 4.2\left( {8 + \sqrt {63} } \right) = 4 - 2\sqrt {195} - 8\sqrt {63} < 0\)
Suy ra phương trình ẩn t vô nghiệm hay phương trình đã cho cũng vô nghiệm.
Chọn đáp án D
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Có bao nhiêu giá trị nguyên của a để phương trình: \({x^4} + 2{x^2} + a = 0\;\left( 1 \right)\) có đúng 4 nghiệm:
- Có bao nhiêu giá trị nguyên của a để phương trình sau: \({x^4} + 2{x^2} + a = 0\;\left( 1 \right)\) có đúng 3 nghiệm phân bi
- Phương trình sau đây có bao nhiêu nghiệm âm: \({x^6} + 2003{x^3} - 2005 = 0\)
- Cho phương trình \(a{x^4} + b{x^2} + c = 0\left( 1 \right)\;\left( {a \ne 0} \right)\). Đặt: \(\Delta = {b^2} - 4{\rm{a}}c,S = - \frac{b}{a},P = \frac{c}{a}\). Ta có (1) vô nghiệm khi và chỉ khi:
- Phương trình \({x^4} + \left( {\sqrt {65} - \sqrt 3 } \right){x^2} + 2\left( {8 + \sqrt {63} } \right) = 0\) có bao nhiêu nghiệm?
- Phương trình − x 4 − 2 ( √ 2 − 1 ) x 2 + ( 3 − 2 √ 2 ) = 0 −x4−22−1x2+3−22=0 có bao nhiêu nghiệm?
- Cho phương trình \({x^4} + {x^2} + m = 0\). Khẳng định nào sau đây là đúng:
- Phương trình \(- {x^4} + \left( {\sqrt 2 - \sqrt 3 } \right){x^2} = 0\) có:
- Phương trình sau có bao nhiêu nghiệm âm: \({x^4} - 2005{x^2} - 13 = 0\)
- Phương trình: \(2{x^4} - 2019{x^2} - 6 = 0\) có bao nhiêu nghiệm dương?