-
Câu hỏi:
Nghiệm của phương trình \(\dfrac{{x - 4}}{{ - {x^2} + 4x - 3}} = \dfrac{3}{{{x^2} - 4x + 3}} - 1\) là
-
A.
x = 4
-
B.
x = 1
-
C.
x = 3
-
D.
x = 4 và x = 1
Lời giải tham khảo:
Đáp án đúng: A
Điều kiện: \(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 4x + 3 \ne 0}\\{ - {x^2} + 4x - 3 \ne 0}\end{array}} \right.\) \( \Leftrightarrow x \ne 1,x \ne 3\)
\((1)\) \( \Leftrightarrow \dfrac{{4 - x}}{{{x^2} - 4x + 3}} = \dfrac{{3 - {x^2} + 4x - 3}}{{{x^2} - 4x + 3}}\)
\( \Rightarrow 4 - x = 3 - {x^2} + 4x - 3\)
\( \Leftrightarrow {x^2} - 5x + 4 = 0\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 4}\end{array}} \right.\)
Đối chiếu điều kiện ta thấy chỉ có giá trị \(x = 4\) thỏa mãn.
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Điều kiện xác định của phương trình \(\sqrt{x^{2}+x+1}=\sqrt{x^{2}-x+1}\) là
- Điều kiện xác định của phương trình \(\frac{2 x+3}{x-3}=\frac{24}{x^{2}-9}+\frac{2(x+5)}{x+3}\) là
- Tổng các nghiệm của phương trình \(\sqrt {3x + 7} - \sqrt {x + 1} = 2\) là
- Phương trình \(\sqrt {3{x^2} - 4x - 4} = \sqrt {2x - 5} \) có nghiệm là:
- Phương trình \(\sqrt {{x^2} - 2x + 3} = 2x - 1\) có nghiệm là:
- Nghiệm của phương trình \(\dfrac{{x - 4}}{{ - {x^2} + 4x - 3}} = \dfrac{3}{{{x^2} - 4x + 3}} - 1\) là
- Cho biết tam thức bậc hai \(f\left( x \right) = - {x^2} + 3x - 2\) nhận giá trị không âm khi và chỉ khi
- Tam thức bậc hai \(f(x)=-x^{2}-4 x+5\). Tìm tất cả giá trị của x để \(f(x) \geq 0\)
- Tập nghiệm của bất phương trình \( - {x^2} + 5x - 4 < 0\)
- Tập nghiệm của bất phương trình sau đây \(-x^{2}+x+12 \geq 0\) là