-
Câu hỏi:
Hệ số của số hạng chứa x7 trong khai triển nhị thức \(\left(x-\frac{2}{x \sqrt{x}}\right)^{12} \text { (với } x>0)\) là:
-
A.
264
-
B.
493
-
C.
419
-
D.
152
Lời giải tham khảo:
Đáp án đúng: A
Số hạng tổng quát của khai triển là
\(T_{k+1}=C_{12}^{k} \cdot x^{12-k} \cdot\left(-\frac{2}{x \sqrt{x}}\right)^{k}=(-2)^{k} \cdot C_{12}^{k} \cdot x^{12-k} \cdot x^{-\frac{3 k}{2}}=(-2)^{k} \cdot C_{12}^{k} \cdot x^{12-\frac{5 k}{2}}\)
Số hạng trên chứa \(x^{7}\) suy ra \(12-\frac{5 k}{2}=7 \Leftrightarrow k=2\).
Vậy hệ số của số hạng chứa \(x^7\) trong khai triển trên là \((-2)^{2} \cdot C_{12}^{2}=264\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho biết hệ số của x2 trong khai triển \((1+2x)^n\) bằng 180 .Tìm n .
- Hệ số lớn nhất trong khai triển \(\left(\frac{1}{4}+\frac{3}{4} x\right)^{4}\)
- Hệ số của x31 trong khai triển \(\left(x+\frac{1}{x^{2}}\right)^{40}, x \neq 0\)
- Tìm hệ số của số hạng chứa x7 trong khai triển nhị thức \(\left(x+\frac{1}{x}\right)^{13},(\text { với } x \neq 0)\)
- Hệ số của số hạng chứa x7 trong khai triển nhị thức \(\left(x-\frac{2}{x \sqrt{x}}\right)^{12} \text { (với } x>0)\) là:
- Tìm hạng tử đứng giữa của khai triển \(\left(\frac{1}{\sqrt[5]{x}}+\sqrt[3]{x}\right)^{10}\)
- Tìm số hạng không chứa x trong khai triển \(\left(x^{2}+\frac{1}{x^{4}}\right)^{12}\)
- Tìm hạng tử độc lập với x trong khai triển \(\left(\frac{x}{3}+\frac{3}{x}\right)^{12}\)
- Tìm hạng tử không chứa x trong khai triển \(\left(x^{2}+\frac{1}{x}\right)^{15}\)
- Xác định hệ số thứ nhất trong khai triển \(\left(x^{3}+\frac{1}{x^{2}}\right)^{n}\)