OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Gọi \(S\) là tập nghiệm của phương trình sau \(2{{\log }_{2}}\left( 2x-2 \right)+{{\log }_{2}}{{\left( x-3 \right)}^{2}}=2\) trên \(\mathbb{R}\). Tổng các phần tử của \(S\) bằng?

    • A. 
      \(8+\sqrt{2}.\)       
    • B. 
      \(6.\)                   
    • C. 
      \(4+\sqrt{2}.\)            
    • D. 
      \(6+\sqrt{2}.\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Điều kiện xác định của phương trình là

    \(\begin{array}{l} \left\{ \begin{array}{l} 2x - 2 > 0\\ {\left( {x - 3} \right)^2} > 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x > 1\\ x \ne 3 \end{array} \right. \end{array}\) (*)

    Với điều kiện (*) phương trình \(2{{\log }_{2}}\left( 2x-2 \right)+{{\log }_{2}}{{\left( x-3 \right)}^{2}}=2\)

    \(\Leftrightarrow {{\log }_{2}}{{\left( 2x-2 \right)}^{2}}+{{\log }_{2}}{{\left( x-3 \right)}^{2}}=2\)

    \(\Leftrightarrow {{\log }_{2}}\left[ {{\left( 2x-2 \right)}^{2}}{{\left( x-3 \right)}^{2}} \right]=2\)

    \(\Leftrightarrow {{\left[ \left( 2x-2 \right)\left( x-3 \right) \right]}^{2}}=4\)

    \(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l} \left( {2x - 2} \right)\left( {x - 3} \right) = 2\\ \left( {2x - 2} \right)\left( {x - 3} \right) = - 2 \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} 2{x^2} - 8x + 4 = 0{\kern 1pt} {\kern 1pt} \left( 1 \right)\\ 2{x^2} - 8x + 8 = 0{\kern 1pt} {\kern 1pt} {\kern 1pt} \left( 2 \right) \end{array} \right. \end{array}\)

    Phương trình (1) có các nghiệm \(x=2+\sqrt{2}\,\,\,\left( N \right);\,\,\,x=2-\sqrt{2}\,\,\,\left( L \right)\)

    Phương trình (2) có nghiệm \(x=2\,\,\left( N \right)\).

    Vậy tập nghiệm của phương trình đã cho là \(S=\left\{ 2+\sqrt{2};\,\,2 \right\}\). Tổng các nghiệm bằng \(4+\sqrt{2}\).

    Chọn C

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF