OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho đồ thị \(\left( C \right):y=\frac{x+2}{x-1}\). Gọi \(A,\ B,\ C\) là 3 điểm phân biệt thuộc \(\left( C \right)\) sao cho trực tâm \(H\) của tam giác \(ABC\) thuộc đường thẳng \(\Delta :y=-3x+10\). Độ dài đoạn thẳng \(OH\) bằng?

    • A. 
      \(OH=5\).              
    • B. 
      \(OH=2\sqrt{5}.\)     
    • C. 
      \(OH=2\sqrt{5}.\)     
    • D. 
      \(OH=\sqrt{5}\).

    Lời giải tham khảo:

    Đáp án đúng: B

    Do \(H\in \Delta \Rightarrow H\left( x;-3x+10 \right)\).

    Mà \(A,\ B,\ C\) là ba điểm phân biệt thuộc \(\left( C \right)\) nên trực tâm \(H\)của tam giác \(ABC\)cũng thuộc \(\left( C \right)\)dó đó

    \(-3x+10=\frac{x+2}{x-1}\)\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l} x \ne 1\\ \left( { - 3x + 10} \right)\left( {x - 1} \right) = x + 2 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ne 1\\ {x^2} - 4x + 4 = 0 \end{array} \right. \end{array}\)\(\Leftrightarrow x=2\).

    Vậy \(H\left( 2;4 \right)\)\( \Rightarrow \overrightarrow{OH}=\left( 2;4 \right)\)\( \Rightarrow OH=2\sqrt{5}.\)

    Chọn B

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF