OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho khối chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,\) cạnh bên \(SA=y\,\,\left( y>0 \right).\) và vuông góc với mp đáy \(\left( ABCD \right)\). Trên cạnh \(AD\) lấy điểm \(M\) và đặt \(AM=x\,(0 < x < a).\) Tính thể tích lớn nhất \({{V}_{\max }}\) của khối chóp \(S.ABCM,\) biết \({{x}^{2}}+{{y}^{2}}={{a}^{2}}\)? 

    • A. 
      \(\frac{{{a}^{3}}\sqrt{3}}{8}\)                 
    • B. 
      \(\frac{{{a}^{3}}\sqrt{3}}{9}\)     
    • C. 
      \(\frac{{{a}^{3}}\sqrt{3}}{3}\)              
    • D. 
      \(\frac{{{a}^{3}}\sqrt{3}}{7}\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Theo đề bài, ta có \(0

    Khi đó \({{V}_{S.ABCM}}=\frac{1}{3}.{{S}_{ABCM}}.SA=\frac{1}{3}.\frac{\left( x+a \right)a}{2}.y=\frac{1}{6}a\sqrt{{{a}^{2}}-{{x}^{2}}}\left( x+a \right)\)

    Ta xét hàm số \(f\left( x \right)=\left( x+a \right)\sqrt{{{a}^{2}}-{{x}^{2}}}\)với \(0

    \({f}'\left( x \right)=\frac{-2{{x}^{2}}-ax+{{a}^{2}}}{\sqrt{{{a}^{2}}-{{x}^{2}}}}\)\(\Rightarrow {f}'\left( x \right)=0\Leftrightarrow x=\frac{a}{2}\)

    Ta có bảng biến thiên của \(f\left( x \right)\)

    Vậy \(\underset{\left( 0;a \right)}{\mathop{\max }}\,f\left( x \right)=f\left( \frac{a}{2} \right)=\frac{3{{a}^{2}}\sqrt{3}}{4}\) suy ra \(\underset{(0;a)}{\mathop{\max }}\,{{V}_{S.ABCM}}=\frac{{{a}^{3}}\sqrt{3}}{8}\)(đvtt).

    Chọn A

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF