-
Câu hỏi:
Đường tròn (C) đi qua hai điểm A(1;2), B(3;4) và tiếp xúc với đường thẳng \(\Delta :3x + y - 3 = 0\). Viết phương trình đường tròn (C), biết tâm của (C) có tọa độ là những số nguyên.
-
A.
\({x^2} + {y^2} - 3x-7y + 12 = 0.\)
-
B.
\({x^2} + {y^2} - 6x-4y + 5 = 0.\)
-
C.
\({x^2} + {y^2} - 8x-2y +7 = 0.\)
-
D.
\({x^2} + {y^2} - 2x - 8y + 20 = 0.\)
Lời giải tham khảo:
Đáp án đúng: C
\(AB:x - y + 1 = 0,\) đoạn AB có trung điểm M(2;3) → trung trực của đoạn AB là
\(d:x + y - 5 = 0 \to I\left( {a;5 - a} \right),\,\,a \in Z\)
Ta có:
\(R = IA = d\left[ {I;\Delta } \right] = \sqrt {{{\left( {a - 1} \right)}^2} + {{\left( {a - 3} \right)}^2}} = \frac{{\left| {2a + 2} \right|}}{{\sqrt {10} }} \\ \Leftrightarrow a = 4 \to I\left( {4;1} \right),\,R = \sqrt {10} .\)
Vậy \({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} = 10 \Leftrightarrow {x^2} + {y^2} - 8x - 2y + 7 = 0.\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Đường tròn đường kính AB với \(A(1;1),B(7;5)\) có phương trình là gì?
- Tìm tọa độ tâm I và bán kính R của đường tròn \(\left( C \right):{x^2} + {y^2} - 6x + 2y + 6 = 0\).
- Đường tròn đường kính AB với \(A\left( {3; - 1} \right),{\rm{ }}B\left( {1; - 5} \right)\) có phương trình là:
- Đường tròn (C) có tâm I(-2;3) và đi qua M(2;-3) có phương trình là:
- Đường tròn \(\left( C \right):{x^2} + {y^2} + 12x - 14y + 4 = 0\) có dạng tổng quát là:
- Tọa độ tâm I và bán kính R của đường tròn \(\left( C \right):16{x^2} + 16{y^2} + 16x - 8y - 11 = 0\) là:
- Cho tam giác ABC có \(A(-2;4),B(5;5),C(6;-2)\). Đường tròn ngoại tiếp tam giác ABC có phương trình là gì?
- Hãy tìm bán kính R của đường tròn đi qua ba điểm \(A(0;4), B(3;4),C(3;0)\)
- Đường tròn (C) đi qua hai điểm A(1;2), B(3;4) và tiếp xúc với đường thẳng sau \(\Delta :3x + y - 3 = 0\).
- Đường tròn (C) đi qua điểm A(1;-2) và tiếp xúc với đường thẳng sau \(\Delta :x - y + 1 = 0\) tại M(1;2).