-
Câu hỏi:
Cho tam giác ABC vuông tại A, có cạnh BC cố định. Gọi I là giao điểm của ba đường phân giác trong. Quỹ tích điểm I khi A thay đổi là:
-
A.
Đường tròn đường kính BC
-
B.
Đường thẳng song song với BC
-
C.
Một cung chứa góc 1350 dựng trên đoạn BC (nằm cùng phía với A so với BC)
-
D.
Hai cung chứa góc 1350 dựng trên đoạn BC
Lời giải tham khảo:
Đáp án đúng: C
Tam giác ABC vuông tại A nên \(\widehat{ABC}+\widehat{ACB}=90^0\Rightarrow 2\widehat{B_1}+2\widehat{C_1}=90^0 \Rightarrow \widehat{B_1}+\widehat{C_1}=45^0\)
Xét tam giác BIC có \(\widehat{B_1}+\widehat{C_1}=45^0\) nên \(\widehat{BIC}=180^0-(\widehat{B_1}+\widehat{C_1})=180^0-45^0=135^0\)
Điểm I nhìn đoạn thẳng BC cố định dưới góc 1350 không đổi, vậy quỹ tích điểm I là một cung chứa góc 1350 dựng trên đoạn BC (nằm cùng phía với A so với BC)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Khẳng định nào sau đây là sai:
- Quỹ tích các điểm M nhìn đoạn thẳng AB dưới một góc 120^0 là:
- Cho tam giác ABC vuông tại A, có cạnh BC cố định. Gọi I là giao điểm của ba đường phân giác trong. Quỹ tích điểm I khi A thay đổi là:
- Cho đường thẳng d,một điểm C nằm ngoài đường thẳng d và cách d một khoảng là 5cm. Tập hợp các điểm trên d cách C một khoảng là 6cm là
- Tập hợp các điểm cách đều đường thẳng d cho trước là