-
Câu hỏi:
Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + 1\) có đồ thị (C). Hình bên là một phần của đồ thị hàm số \(g\left( x \right) = f'\left( x \right)\) trong đó a, b, c là các hằng số thực. Có bao nhiêu biểu thức nhận giá trị dương trong các biểu thức sau \(ab,ac,3a + 3b + c\) và \(a - b + c.\)
-
A.
1
-
B.
3
-
C.
2
-
D.
0
Lời giải tham khảo:
Đáp án đúng: C
Hàm số \(g\left( x \right) = 3a{x^2} + 2bx + c\) có đồ thị (C).
Ta có ngay \(g\left( 0 \right) > 0 \Rightarrow c > 0\)
Cho (C) giao với trục hoành ta được \(3a{x^2} + 2bx + c = 0\) có 2 nghiệm dương phân biệt.
\(\Leftrightarrow \left\{ \begin{array}{l} a \ne 0\\ \Delta ' = {b^2} - 3ac > 0\\ {x_1} + {x_2} = - \frac{{2b}}{{3a}} > 0\\ {x_1}{x_2} = \frac{c}{{3a}} > 0 \end{array} \right.\)\(\Rightarrow a > 0,b < 0\)
vì \(c > 0 \Rightarrow ac > 0,a - b + c > 0\)Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho hàm số y= f(x) có \(\mathop {\lim }\limits_{x \to + \infty } f(x) = 0\) và \(\mathop {\lim }\limits_{x \to - \infty } f(x) = + \infty .\) Mệnh đề nào sau đây đúng?
- Cho hàm số \(y=(x)\) xác định, liên tục trên đoạn \(\left [ -2;2 \right ]\) và có đồ thị là đường cong trong hình vẽ bên. Hàm số f(x) đạt cực tiểu tại điểm nào dưới đây?
- Đường cong ở hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê trong bốn phương án A, B, C, D dưới đây. Hỏi đó là hàm số nào?
- Cho hàm số y=f(x) có bảng biến thiên như hình bên. Hỏi f(x) có bao nhiêu tiệm cận ngang?
- Xác định a,b để hàm số \(y = \frac{{a - x}}{{x + b}}\) có đồ thị như hình vẽ:
- Cho hàm số y = f(x) có đồ thị hàm số đường cong trong hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình
- Cho hàm số y = f (x) có đồ thị như hình vẽ bên.Xác định tất cả các giá trị của tham số m để phương trình |f(x)|=m có 6 nghiệm thực phân biệt
- Hình vẽ bên là đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}.\) Mệnh đề nào sau đây là đúng?
- Đường cong dưới đây là đồ thị của hàm số \(y = - {x^3} + 3{x^2} - 4\). Tìm tất cả các giá trị thực của tham số m để phương trình \({-x^3} + 3{x^2} - m = 0\) có hai nghiệm phân biệt.
- Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + 1\) có đồ thị (C). Hình bên là một phần của đồ thị hàm số \(g\left( x \right) = f'\left( x \right)\) trong đó a, b, c là các hằng số thực. Có bao nhiêu biểu thức nhận giá trị dương trong các biểu thức sau \(ab,ac,3a + 3b + c\) và \(a - b + c.\)