-
Câu hỏi:
Cho hai đường thẳng xy và x'y' cuông góc với nhau cắt nhau tại O. Một đoạn thẳng AB=8 chuyển động sao cho A luôn nằm trên xy và B luôn nằm x'y'. Khi đó trung điểm M của AB di chuyển trên đường nào?
-
A.
Đường thẳng song song với xy cách xy 1 đoạn là 4
-
B.
Đường thẳng song song với x'y' cách x'y' 1 đoạn là 4
-
C.
Đường tròn tâm O bán kính là 4
-
D.
Đường tròn tâm O bán kính là 8
Lời giải tham khảo:
Đáp án đúng: C
Ta có: \(\Delta OAB\) vuông tại O có M là trung điểm AB nên \(OM=\frac{AB}{2}=4\) nên M luôn cách O một khoảng là 4. Tập hợp các M là đường tròn tâm M bán kính là 4
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho hai đường thẳng xy và xy cuông góc với nhau cắt nhau tại O.Một đoạn thẳng AB=8 chuyển động sao cho A luôn nằm trên xy và B luôn nằm x'y'
- Cho hình thang ABCD (ABparallel CD), widehat{C}=widehat{D}=60^{circ}, CD=2AD=8. Khi đó A, B, C, D luôn thuộc đường tròn nào?
- Cho tam giác ABC có BH, CE là các đường cao. Gọi M là giao điểm BH và CE. I là trung điểm BC. Khi đó B,C,E,H cùng thuộc đường tròn nào?
- Cho đường tròn tâm A đường kính BC. Gọi D là trung điểm AB. Dây EF vuông góc với AB tại D. Tứ giác EBFA là hình gì?
- Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB tại N, AC tại M. Gọi H là giao điểm của CN và BM. Khi đó A,N,H,M cùng nằm trên đường tròn nào?