-
Câu hỏi:
Cho đường tròn (C) có phương trình x2+y2+4x-2y-4=0 và điểm M(1; 2). Số tiếp tuyến của đường tròn đi qua M là
-
A.
0
-
B.
1
-
C.
2
-
D.
4
Lời giải tham khảo:
Đáp án đúng: C
Đường tròn (C): x2+y2+4x-2y-4=0 có tâm I(-2; 1) và bán kính R = 3. Ta có
\(IM = \sqrt {{{\left( {1 + 2} \right)}^2} + {{\left( {2 - 1} \right)}^2}} = \sqrt {10} > 3\)
nên M nằm ngoài đường tròn. Qua M kẻ được hai tiếp tuyến đến đường tròn.
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho đường tròn (C) có phương trình x2+y2+2x-8y=0. Khi đó đường tròn có tâm I và bán kính R với
- Phương trình đường tròn có tâm I(3; -5) và có bán kính R = 2 là
- Phương trình đường tròn đường kính AB với A(1; 6), B(-3; 2) là
- Phương trình đường tròn đi qua ba điểm A(-1; 3), B(1; 4), C(3; 2) là:
- Cho đường tròn (C) có phương trình x2+y2-6x+4y-12=0. Phương trình tiếp tuyến của đường tròn tại điểm A(-1; 1) là:
- Cho đường tròn (C) có tâm I(-1; 2) đi qua điểm A(3; 4). Khi đó phương trình của (C) là:
- Cho đường tròn (C) có tâm I(2; 5) và tiếp xúc với đường thẳng Δ: 3x – 4y – 6 = 0. Khi đó (C) có bán kính là:
- Đường tròn có tâm nằm trên đường thẳng Δ: x + 2y – 6 = 0 và tiếp xúc với hai trục tọa độ.
- Cho đường tròn (C) có phương trình x2+y2+4x-6y-3=0 và đường thẳng Δ: 3x – 4y – 2 = 0. Khẳng định nào sau đây là đúng?
- Cho đường tròn (C) có phương trình x2+y2+4x-2y-4=0 và điểm M(1; 2). Số tiếp tuyến của đường tròn đi qua M là