OPTADS360
AANETWORK
AMBIENT
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho đoạn mạch xoay chiều AB nối tiếp gồm: AM chứa biến trở R, đoạn mạch MN chứa r, đoạn NP chứa cuộn cảm thuần, đoạn PB chứa tụ điện có điện dung biến thiên. Ban đầu thay đổi tụ điện sao cho UAP không phụ thuộc vào biến trở R. Giữ nguyên giá trị điện dung đó và thay đổi biến trở. Khi \({{u}_{AP}}\) lệch pha cực đại so với \({{u}_{AB}}\) thì \({{U}_{PB}}={{U}_{1}}\). Khi tích \(\left( {{U}_{AN}}.{{U}_{NP}} \right)\) cực đại thì \({{U}_{AM}}={{U}_{2}}\). Biết rằng \({{U}_{1}}=2.\left( \sqrt{6}+\sqrt{3} \right){{U}_{2}}\). Độ lệch pha cực đại giữa \({{u}_{AP}}\) và \({{u}_{AB}}\) gần nhất với giá trị nào?

    • A. 
      \(\frac{4\pi }{7}\)   
    • B. 
      \(\frac{6\pi }{7}\)      
    • C. 
      \(\frac{3\pi }{7}\)       
    • D. 
      \(\frac{5\pi }{7}\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Điện áp hiệu dụng giữa hai đầu đoạn mạch \(AP\) là:

    \({{U}_{AP}}=\frac{U\sqrt{{{\left( R+r \right)}^{2}}+{{Z}_{L}}^{2}}}{\sqrt{{{\left( R+r \right)}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}}\)

    Để điện áp hiệu dụng giữa hai đầu đoạn mạch \(AP\) không phụ thuộc vào R, ta có:

    \({{\left( R+r \right)}^{2}}+{{Z}_{L}}^{2}={{\left( R+r \right)}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}\)

    \(\Rightarrow {{Z}_{L}}^{2}={{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}\Rightarrow {{Z}_{L}}={{Z}_{C}}-{{Z}_{L}}\Rightarrow {{Z}_{C}}=2{{Z}_{L}}\)

    Ta có giản đồ vecto:

    Từ giản đồ vecto, ta thấy góc lệch giữa \({{u}_{AP}}\) và \({{u}_{AB}}\) là:

    \(\tan \left( 2\alpha  \right)=\frac{2\tan \alpha }{1-{{\tan }^{2}}\alpha }=\frac{2.\frac{{{Z}_{L}}}{R+r}}{1-{{\left( \frac{{{Z}_{L}}}{R+r} \right)}^{2}}}\)

    \({{\left( \tan 2\alpha  \right)}_{\max }}\Rightarrow {{\left( 2\alpha  \right)}_{\max }}\Rightarrow {{\alpha }_{\max }}\Rightarrow {{\left( \tan \alpha  \right)}_{\max }}\)

    \(\Rightarrow {{\left( \frac{{{Z}_{L}}}{R+r} \right)}_{\max }}\Rightarrow {{\left( R+r \right)}_{\min }}\Rightarrow R=0\)

    Khi đó ta có:

    \({{U}_{1}}={{U}_{BP}}={{U}_{C}}=\frac{U.{{Z}_{C}}}{\sqrt{{{r}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}}=\frac{U.2{{Z}_{L}}}{\sqrt{{{r}^{2}}+{{Z}_{L}}^{2}}}\)

    Ta có tích

    \({{U}_{AN}}.{{U}_{NP}}=\frac{U.\left( R+r \right)}{\sqrt{{{\left( R+r \right)}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}}.\frac{U.{{Z}_{L}}}{\sqrt{{{\left( R+r \right)}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}}\)

    \(={{U}^{2}}.\frac{{{Z}_{L}}.\left( R+r \right)}{{{\left( R+r \right)}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}={{U}^{2}}.{{Z}_{L}}.\frac{1}{\left( R+r \right)+\frac{{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}{R+r}}\)

    Đặt \(x=R+r;f\left( x \right)=x+\frac{{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}{x}\Rightarrow {{U}_{AN}}.{{U}_{NP}}={{U}^{2}}.{{Z}_{L}}.\frac{1}{f\left( x \right)}\)

    Để tích \({{\left( {{U}_{AN}}.{{U}_{NP}} \right)}_{\max }}\Rightarrow f{{\left( x \right)}_{\min }}\)

    Áp dụng bất đẳng thức Cô – si, ta có:

    \(x+\frac{{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}{x}\ge 2\sqrt{x.\frac{{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}{x}}=2\left| {{Z}_{L}}-{{Z}_{C}} \right|\)

    \(f{{\left( x \right)}_{\min }}\Leftrightarrow x=\frac{{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}{x}\)

    \(\Rightarrow {{x}^{2}}={{\left( R+r \right)}^{2}}={{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}={{Z}_{L}}^{2}\)

    \(\Rightarrow R={{Z}_{L}}-r\)

    Khi đó ta có: \({{U}_{2}}={{U}_{AM}}={{U}_{R}}=\frac{U.R}{\sqrt{{{\left( R+r \right)}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}}\)

    \(\Rightarrow {{U}_{2}}=\frac{U.\left( {{Z}_{L}}-r \right)}{\sqrt{2{{Z}_{L}}^{2}}}=\frac{U.\left( {{Z}_{L}}-r \right)}{\sqrt{2}{{Z}_{L}}}\)

    Theo đề bài ta có:

    \({{U}_{1}}=2.\left( \sqrt{6}+\sqrt{3} \right){{U}_{2}}\)

    \(\Rightarrow \frac{U.2{{Z}_{L}}}{\sqrt{{{r}^{2}}+{{Z}_{L}}^{2}}}=2.\left( \sqrt{6}+\sqrt{3} \right).\frac{U.\left( {{Z}_{L}}-r \right)}{\sqrt{2}{{Z}_{L}}}\)

    \(\Rightarrow \sqrt{2}{{Z}_{L}}^{2}=\left( \sqrt{6}+\sqrt{3} \right).\left( {{Z}_{L}}-r \right).\sqrt{{{r}^{2}}+{{Z}_{L}}^{2}}\)

    \(\Rightarrow {{Z}_{L}}^{2}=\frac{\sqrt{6}+\sqrt{3}}{\sqrt{2}}.\left( {{Z}_{L}}-r \right).\sqrt{{{r}^{2}}+{{Z}_{L}}^{2}}\)

    \(\Rightarrow {{\left( \frac{{{Z}_{L}}}{r} \right)}^{2}}=\frac{\sqrt{6}-\sqrt{3}}{\sqrt{2}}.\left( \frac{{{Z}_{L}}}{r}-1 \right).\sqrt{1+\frac{{{Z}_{L}}^{2}}{{{r}^{2}}}}\left( 1 \right)\)

    Đặt \(\tan \alpha =\frac{{{Z}_{L}}}{r}\), thay vào phương trình (1), ta có:

    \({{x}^{2}}=\frac{\sqrt{6}+\sqrt{3}}{\sqrt{2}}\left( x-1 \right)\sqrt{1+{{x}^{2}}}\Rightarrow x=\tan \alpha \approx 1.377\)\(\Rightarrow \alpha \approx {{54}^{0}}\Rightarrow 2\alpha ={{108}^{0}}\)

    Góc \({{108}^{0}}\) có giá trị gần nhất với góc \(\frac{4\pi }{7}\)

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF