-
Câu hỏi:
Cho ba điểm \(A(1;1);\;B(2;0);\;C(3;4)\). Viết phương trình đường thẳng đi qua A và cách đều hai điểm B,C.
-
A.
\(4x - y - 3 = 0;2x - 3y + 1 = 0\)
-
B.
\(4x - y - 3 = 0;2x + 3y + 1 = 0\)
-
C.
\(4x + y - 3 = 0;2x - 3y + 1 = 0\)
-
D.
\(x - y = 0;2x - 3y + 1 = 0\)
Lời giải tham khảo:
Đáp án đúng: A
Gọi (d) là đường thẳng đi qua A và cách đều B,C. Khi đó ta có các trường hợp sau
TH1: d đi qua trung điểm của BC \({\rm{I}}\left( {\frac{5}{2};2} \right)\) là trung điểm của BC.\(\overrightarrow {{\rm{AM}}} = \left( {\frac{3}{2};1} \right)\) là VTCP của đường thẳng d. Khi đó
\({\rm{\;(d)\;}}: - 2\left( {x - 1} \right) + 3\left( {y - 1} \right) = 0 \Leftrightarrow - 2x + 3y - 1 = 0\)
TH2: d song song với BC, khi đó d nhận \(\overrightarrow {{\rm{BC}}} = \left( {1;4} \right)\) làm VTCP, phương trình đường thẳng
\(\left( d \right): - 4\left( {x - 1} \right) + y - 1 = 0 \Leftrightarrow - 4x + y + 3 = 0\)
Chọn đáp án A
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho đường thẳng \(\Delta \) có vectơ chỉ phương là \(\vec u = \left( {2; - 3} \right)\). Vectơ nào dưới đây không phải là vectơ chỉ phương của \(\Delta \)?
- Cho đường thẳng \(\Delta \) có phương trình sau \(\left\{ {\begin{array}{*{20}{c}}{x = - 2 + 5t}\\{y = 3 - 2t}\end{array
- Cho biết hai đường thẳng \(\left( {{d_1}} \right):mx + y = m + 1\,\,,\left( {{d_2}} \right):x + my = 2\,\) cắt nhau khi và chỉ khi :
- Cho biết ba điểm \(A\left( {1; - 2} \right)\,,B\left( {5; - 4} \right)\,,C\left( { - 1;4} \right)\). Đường cao AA' của tam giác ABC có phương trình
- Cho biết ba điểm \(A(1;1);\;B(2;0);\;C(3;4)\). Viết phương trình đường thẳng đi qua A và cách đều hai điểm B,C.
- Cho biết đường tròn (C) có phương trình \({x^2}\; + \;{y^2}\; + \;2x\;--\;8y\; + \;8\; = \;0\). Khi đó đường tròn có tâm I và bán kính R với
- Cho đường tròn (C) có phương trình sau \({x^2} + {y^2} - 6x + 4y - 12 = 0\). Phương trình tiếp tuyến của đường tròn tại điểm A(-1; 1) là:
- Cho biết đường tròn (C) có tâm I(-1; 2) đi qua điểm A(3; 4). Khi đó phương trình của (C) là
- Cho biết elip \(\left( E \right):\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1\) và đường thẳng \(d:3x + 4y - 12 = 0\). Số giao điểm của đường thẳng d và elip (E) là:
- Cho Parabol \(y = x^2 + x + c\) cắt đường phân giác của góc phần tư thứ nhất tại điểm có hoành độ x = 1. Khi đó c bằng: