OPTADS360
ATNETWORK
ADS_ZUNIA
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 75 trang 169 SBT Toán 9 Tập 1

Giải bài 75 tr 169 sách BT Toán lớp 9 Tập 1

Cho đường tròn \((O; 3cm)\) và đường tròn \((O’; 1cm)\) tiếp xúc ngoài tại \(A.\) Vẽ hai bán kính \(OB\) và \(O’C\) song song với nhau thuộc cùng nửa mặt phẳng có bờ \(OO’.\)

\(a)\) Tính số đo góc \(BAC.\)

\(b)\) Gọi \(I\) là giao điểm của \(BC\) và \(OO’.\) Tính độ dài \(OI.\)

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng kiến thức:

+) Nếu hai đường tròn tiếp xúc nhau thi  tiếp điểm nằm trên đường nối tâm.

+) Hệ quả định lí Ta-lét: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.

Lời giải chi tiết

\(a)\) Ta có: \(OB // O’C\;\;(gt)\)

Suy ra:     \(\widehat {AOB} + \widehat {AO'C} = 180^\circ \) (hai góc trong cùng phía)

Xét đường tròn (O) ta có: \(OA = OB ( = 3cm)\)

\(⇒\) Tam giác \(AOB\) cân tại \(O.\)

\(⇒\widehat {BAO}=\widehat {OBA}\) và \(\widehat {BAO}+\widehat {OBA}+\widehat {BOA}=180^0\) (tổng ba góc trong tam giác) 

Suy ra:    \(\widehat {BAO} = \displaystyle {{180^\circ  - \widehat {AOB}} \over 2}\)

Xét đường tròn (O') ta có: \(O'A = O'C ( = 1cm)\)

\(⇒\) Tam giác \(AO'C\) cân tại \(O'\)

\(⇒\widehat {CAO'}=\widehat {O'CA}\) và \(\widehat {CAO'}+\widehat {O'CA}+\widehat {CO'A}=180^0\) (tổng ba góc trong tam giác) 

Suy ra: \(\widehat {CAO'} = \displaystyle{{180^\circ  - \widehat {AO'C}} \over 2}\)

Ta có: \(\displaystyle\widehat {BAO} + \widehat {CAO'}\)\(\displaystyle = {{180^\circ  - \widehat {AOB}} \over 2} + {{180^\circ  - \widehat {AO'C}} \over 2}\)

\(\displaystyle = {{180^\circ  + 180^\circ  - (\widehat {AOB} + \widehat {AO'C})} \over 2}\)

\(\displaystyle = {{180^\circ  + 180^\circ  - 180^\circ } \over 2} = 90^\circ \)

Lại có:   \(\widehat {BAO} + \widehat {BAC} + \widehat {CAO'} = 180^\circ \)

Suy ra:   \(\widehat {BAC} = 180^\circ  - (\widehat {BAO} + \widehat {CAO'})\)

\( = 180^\circ  - 90^\circ  = 90^\circ \)

\(b)\) Trong tam giác \(IBO,\) ta có: \(OB // O'C\)

Suy ra: \(\displaystyle{{IO'} \over {IO}} = {{O'C} \over {OB}}\) ( hệ quả định lí Ta-lét)

Suy ra: \(\displaystyle{{IO'} \over {IO}} = {1 \over 3} \Rightarrow {{IO - IO'} \over {IO}}\)

\(\displaystyle = {{3 - 1} \over 3} \Rightarrow {{OO'} \over {IO}} = {2 \over 3}\)

Mà \(OO’ = OA + O’A = 3 + 1 = 4 (cm)\)

Suy ra: \(\displaystyle{4 \over {IO}} = {2 \over 3} \)\(\displaystyle \Rightarrow IO = {{4.3} \over 2} = 6 (cm).\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 75 trang 169 SBT Toán 9 Tập 1 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Tra xanh

    Bài 70* (Sách bài tập trang 167)

    Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Dây AC của đường tròn (O) tiếp xúc với đường tròn (O') tại A. Dây AD của đường tròn (O') tiếp xúc với đường tròn (O) tại A. Gọi K là điểm đối xứng với A qua trung điểm I của OO', E là điểm đối xứng với A qua B. Chứng minh rằng :

    a) \(AB\perp KB\)

    b) Bốn điểm A, C, E, D nằm trên cùng một đường tròn 

    Theo dõi (0) 1 Trả lời
NONE
OFF