OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 7.2 trang 94 SBT Toán 8 Tập 2

Giải bài 7.2 tr 94 sách BT Toán lớp 8 Tập 2

Hình thang vuông ABCD (AB // CD) có đường chéo BD vuông góc với cạnh BC tại B và có độ dài BD = m = 7,25cm.

Hãy tính độ dài các cạnh của hình thang, biết rằng BC = n = 10,75cm

(Tính chính xác đến hai chữ số thập phân).

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng:

- Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.

- Định lí Pytago: Bình phương cạnh huyền bằng tổng các bình phương của các cạnh góc vuông.

Lời giải chi tiết

Theo giả thiết \(ABCD\) là hình thang vuông và \(AB // CD,\) \(BD ⊥ BC\) nên ta có:

\(\widehat {DAB} = \widehat {CBD}=90^o\)

\(\widehat {ABD} = \widehat {BDC}\) (cặp góc so le trong)

\( \Rightarrow ∆ ABD\) đồng dạng \(∆ BDC\) (g.g).

\( \Rightarrow \displaystyle {{AB} \over {BD}} = {{AD} \over {BC}} = {{BD} \over {DC}}\)   (1)

Áp dụng định lí Py-ta-go vào tam giác vuông \(DBC\), ta có:

\(D{C^2} = B{D^2} + B{C^2}\)

\( \Rightarrow DC = \sqrt {B{D^2} + B{C^2}}  \)\(\,= \sqrt {{m^2} + {n^2}} \)

Từ dãy tỉ lệ thức (1), ta có:

\(\displaystyle AB = {{B{D^2}} \over {DC}} = {{{m^2}} \over {\sqrt {{m^2} + {n^2}} }};\)

\(\displaystyle AD = {{BC.BD} \over {DC}} = {{m.n} \over {\sqrt {{m^2} + {n^2}} }}\)

Với \(m = 7,25cm; n = 10,75 cm\), ta tính được:

\(DC ≈ 12,97cm; AB ≈ 4,05cm;\) \(AD ≈ 6,01cm.\

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 7.2 trang 94 SBT Toán 8 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Bo Bo
    Bài 39 (Sách bài tập - tập 2 - trang 93)

    Cho hình bình hành ABCD. Gọi E là trung điểm của AB, F là trung điểm của CD (h.26). 

    Chứng minh hai tam giác ADE và CBF đồng dạng với nhau ?

    Theo dõi (0) 1 Trả lời
  • thu trang

    Cho tam giác ABC có ac=8cm, ab=15cm, bc=17cm. trung tuyến AM. AH song song BC va CD song song AM. CMR tam giác AHI đồng dạng tam giác BAC.

    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Xuan Xuan

    Bài 35 SGK trang 79

    bởi Xuan Xuan 31/05/2019

    Bài 35 (Sgk tập 2 - trang 79)

    Chứng minh rằng nếu tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số k thì tỉ số của hai đường phân giác tương ứng của chúng cũng bằng k ?

    Theo dõi (0) 1 Trả lời
  • Nguyễn Ngọc Sơn

    Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm BC.
    a/ chứng minh tam giác ADB đồng dạng tam giác AEC
    b/ chứng minh HE. HC = HD. HB

    Theo dõi (0) 1 Trả lời
NONE
OFF