OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài 6.21 trang 19 SGK Toán 8 Kết nối tri thức Tập 2 - KNTT

Bài 6.21 trang 19 SGK Toán 8 Kết nối tri thức Tập 2

Thực hiện các phép tính sau:

a) \(\frac{{5 - 3{\rm{x}}}}{{x + 1}} - \frac{{ - 2 + 5{\rm{x}}}}{{x + 1}}\)

b) \(\frac{x}{{x - y}} - \frac{y}{{x + y}}\)

c)\(\frac{3}{{x + 1}} - \frac{{2 + 3{\rm{x}}}}{{{x^3} + 1}}\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 6.21

Phương pháp giải:

Thực hiện theo quy tắc trừ hai phân thức.

Lời giải chi tiết:

a) \(\frac{{5 - 3{\rm{x}}}}{{x + 1}} - \frac{{ - 2 + 5{\rm{x}}}}{{x + 1}} = \frac{{5 - 3{\rm{x - }}\left( { - 2 + 5{\rm{x}}} \right)}}{{x + 1}} = \frac{{5 - 3{\rm{x}} + 2 - 5{\rm{x}}}}{{x + 1}} = \frac{{7 - 8{\rm{x}}}}{{x + 1}}\)

b) \(\frac{x}{{x - y}} - \frac{y}{{x + y}} = \frac{{x\left( {x + y} \right) - y\left( {x - y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{x^2} + xy - xy + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{x^2} + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}\)

c) \(\begin{array}{l}\frac{3}{{x + 1}} - \frac{{2 + 3{\rm{x}}}}{{{x^3} + 1}} \\ = \frac{3}{{x + 1}} - \frac{{2 + 3{\rm{x}}}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\\ = \frac{{3\left( {{x^2} - x + 1} \right) - 2 - 3{\rm{x}}}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\\ = \frac{{3{{\rm{x}}^2} - 3{\rm{x}} + 3 - 2 - 3{\rm{x}}}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{{3{{\rm{x}}^2} - 6{\rm{x}} + 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\end{array}\)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài 6.21 trang 19 SGK Toán 8 Kết nối tri thức Tập 2 - KNTT HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF