OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải Câu hỏi 6 trang 59 SBT Toán 7 Kết nối tri thức tập 2 - KNTT

Giải Câu hỏi 6 trang 59 SBT Toán 7 Kết nối tri thức tập 2

Tam giác ABC có số đo ba góc thoả mãn:  \(\widehat A = \widehat B + \widehat C\). Hai tia phân giác của góc A và góc B cắt nhau tại điểm I. Khi đó góc BIC có số đo là:

A.\({120^0}\)

B. \({125^0}\)

C. \({130^0}\)

D. \({135^0}\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Phương pháp giải:

Áp dụng định lí về tổng ba góc trong tam giác; tính chaasrt tia phân giác của một góc.

Lời giải chi tiết:

Ta có:

\(\widehat A + \widehat B + \widehat C = {180^0}\)(Tổng ba góc trong tam giác)

Mà \(\widehat A = \widehat B + \widehat C\)

\(\begin{array}{l} \Rightarrow \left( {\widehat B + \widehat C} \right) + \widehat B + \widehat C = {180^0}\\ \Rightarrow 2\left( {\widehat B + \widehat C} \right) = {180^0}\\ \Rightarrow \widehat B + \widehat C = {180^0}:2 = {90^0}\\ \Rightarrow \widehat A = \widehat B + \widehat C = {90^0}\end{array}\)

Xét tam giác BIC có:

\(\widehat {BIC} = {180^0} - \left( {\widehat {\dfrac{B}{2}} + \dfrac{{\widehat C}}{2}} \right) = {180^0} - \dfrac{{{{90}^0}}}{2} = {180^0} - {45^0} = {135^0}\).

Chọn D.

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải Câu hỏi 6 trang 59 SBT Toán 7 Kết nối tri thức tập 2 - KNTT HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF