OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 6 trang 119 SGK Toán 7 Cánh diều tập 2 - CD

Giải bài 6 trang 119 SGK Toán 7 Cánh diều tập 2

Cho tam giác ABC cân tại A có \(\widehat {ABC} = 70^\circ \). Hai đường cao BD và CE cắt nhau tại H.

a) Tính số đo các góc còn lại của tam giác ABC.

b) Chứng minh BD = CE.

c) Chứng minh tia AH là tia phân giác của góc BAC.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 6

Phương pháp giải

a) Tam giác ABC cân tại A nên số đo góc B bằng số đo góc C và tổng ba góc trong một tam giác bằng 180°.

b) Chứng minh hai tam giác vuông ADB và AEC bằng nhau.

c) Chứng minh \(\widehat {BAH} = \widehat {CAH}\).

Lời giải chi tiết

a) Tam giác ABC cân tại nên: \(\widehat {ABC} = \widehat {ACB} = 70^\circ \).

Tổng ba góc trong một tam giác bằng 180° nên: \(\widehat {BAC} = 180^\circ  - 70^\circ  - 70^\circ  = 40^\circ \).

b) Xét tam giác vuông ADB và tam giác vuông AEC có:

     AB = AC (tam giác ABC cân);

     \(\widehat A\) chung.

Vậy \(\Delta ADB = \Delta AEC\)(cạnh huyền – góc nhọn). Suy ra: BD = CE ( 2 cạnh tương ứng).

c) Trong tam giác ABC có H là giao điểm của hai đường cao BD và CE nên H là trực tâm trong tam giác ABC hay AF vuông góc với BC.

Xét hai tam giác vuông AFB và AFC có:

     AB = AC (tam giác ABC cân);

     AF chung.

Vậy \(\Delta AFB = \Delta AFC\)(cạnh huyền – cạnh góc vuông). Suy ra: \(\widehat {FAB} = \widehat {FAC}\) ( 2 góc tương ứng) hay \(\widehat {BAH} = \widehat {CAH}\).

Vậy tia AH là tia phân giác của góc BAC.

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 6 trang 119 SGK Toán 7 Cánh diều tập 2 - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF