OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 42 trang 81 SBT Toán 7 Cánh diều tập 2 - CD

Giải bài 42 trang 81 SBT Toán 7 Cánh diều tập 2

Cho tam giác ABC có \(\hat A = 90^\circ \), M là trung điểm của BC. Chứng minh BC = 2AM.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 42

Phương pháp giải

- Chứng minh \(\Delta MBA = \Delta MCN(g - c - g)\)

Suy ra: AB = CN và AM = MN

- Chứng minh: \(\Delta BAC = \Delta NCA\) từ đó chứng minh được BC = 2AM

Lời giải chi tiết

Qua C kẻ đường thẳng d song song với AB, d cắt AM tại N.

Suy ra \(\widehat {ABC} = \widehat {BCN}\) (hai góc so le trong).

Ta có BA ⊥ AC, d // AB.

Suy ra d ⊥ AC hay \(\widehat {NCA} = 90^\circ \)

Xét ∆MBA và ∆MCN có:

BM = CM (vì M là trung điểm của BC),

\({\hat M_1} = {\hat M_2}\) (hai góc đối đỉnh),

\(\widehat {ABC} = \widehat {NCB}\) (chứng minh trên)

Do đó ∆MBA = ∆MCN (g.c.g).

Suy ra AB = CN và AM = NM (các cặp cạnh tương ứng).

Xét ∆BAC và ∆NCA có:

AC là cạnh chung,

\(\widehat {BAC} = \widehat {NCA}\) (cùng bằng 90o),

AB = NC (chứng minh trên)

Do đó ∆BAC = ∆NCA (c.g.c)

Suy ra BC = NA (hai cạnh tương ứng).

Mà AM = MN, AN = AM + MN = 2AM.

Nên BC = AN = 2AM.

Vậy 2AM = BC.

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 42 trang 81 SBT Toán 7 Cánh diều tập 2 - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF