OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Giải Bài 3 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 3 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA = SB = SC = SD = a\sqrt 2 \). Gọi \(I,J\) lần lượt là trung điểm của \(AB\) và \(C{\rm{D}}\).

a) Chứng minh \(AB \bot \left( {SIJ} \right)\).

b) Tính khoảng cách giữa hai đường thẳng \(AB\) và \(SC\).

ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 3

Phương pháp giải

‒ Cách chứng minh đường thẳng vuông góc với mặt phẳng: chứng minh đường thẳng đó vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng.

‒ Cách tính khoảng cách giữa hai đường thẳng chéo nhau:

Cách 1: Dựng đường vuông góc chung.

Cách 2: Tính khoảng cách từ đường thẳng này đến một mặt phẳng song song với đường thẳng đó và chứa đường thẳng còn lại.

 

Lời giải chi tiết

a) Gọi \(O\) là tâm của đáy

\( \Rightarrow SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AB\)

\(I\) là trung điểm của \(AB\)

\(J\) là trung điểm của \(C{\rm{D}}\)

\( \Rightarrow IJ\) là đường trung bình của hình vuông \(ABCD\)

\(\left. \begin{array}{l} \Rightarrow IJ\parallel A{\rm{D}}\\AB \bot A{\rm{D}}\end{array} \right\} \Rightarrow IJ \bot AB\)

Ta có:

\(\left. \begin{array}{l}SO \bot AB\\IJ \bot AB\end{array} \right\} \Rightarrow AB \bot \left( {SIJ} \right)\)

 

b) Kẻ \(IH \bot SJ\left( {H \in SJ} \right),OK \bot SJ\left( {K \in SJ} \right) \Rightarrow IH\parallel OK\)

\(O\) là trung điểm của \(IJ \Rightarrow IH = 2{\rm{O}}K\)

Ta có:

\(\left. \begin{array}{l}AB\parallel C{\rm{D}}\\C{\rm{D}} \subset \left( {SC{\rm{D}}} \right)\end{array} \right\} \Rightarrow AB\parallel \left( {SC{\rm{D}}} \right) \Rightarrow d\left( {AB,SC} \right) = d\left( {AB,\left( {SC{\rm{D}}} \right)} \right)\)

\(\begin{array}{l}\left. \begin{array}{l}\left. \begin{array}{l}AB \bot \left( {SIJ} \right)\\C{\rm{D}}\parallel AB\end{array} \right\} \Rightarrow C{\rm{D}} \bot \left( {SIJ} \right) \Rightarrow C{\rm{D}} \bot IH\\ & IH \bot SJ\end{array} \right\} \Rightarrow IH \bot \left( {SC{\rm{D}}} \right)\\ \Rightarrow d\left( {AB,C{\rm{D}}} \right) = d\left( {AB,\left( {SC{\rm{D}}} \right)} \right) = IH\end{array}\)

\(O\) là trung điểm của \(IJ\), \(IH\parallel {\rm{O}}K\)\( \Rightarrow IH = 2{\rm{O}}K\)

\(O\) là trung điểm của \(B{\rm{D}}\)

\(J\) là trung điểm của \(C{\rm{D}}\)

\( \Rightarrow OJ\) là đường trung bình của \(\Delta BCD\)

\( \Rightarrow OJ = \frac{1}{2}BC = \frac{a}{2}\)

\(\Delta ABC\) vuông tại \(B\)\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \Rightarrow OA = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SAO\) vuông tại \(O\)\( \Rightarrow SO = \sqrt {S{A^2} - O{A^2}} = \frac{{a\sqrt 6 }}{2}\)

\(\Delta SOJ\) vuông tại \(O\) có đường cao \(OK\)

\( \Rightarrow OK = \frac{{SO.OJ}}{{\sqrt {S{O^2} + O{J^2}} }} = \frac{{a\sqrt {42} }}{{14}}\)

\( \Rightarrow d\left( {AB,C{\rm{D}}} \right) = IH = 2OK = \frac{{a\sqrt {42} }}{7}\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Giải Bài 3 trang 81 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF