OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 4.15 trang 157 SBT Toán 11

Giải bài 4.15 tr 157 SBT Toán 11

\(\lim \left( {\sqrt {{n^2} - 1}  - \sqrt {{n^2} + 2} } \right)n\) bằng:
A. 0
B. - 3
C. \( - \frac{3}{2}\)
D. \( + \infty \)
ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết

\(\begin{array}{l}
lim\left( {\sqrt {{n^2} - 1}  - \sqrt {{n^2} + 2} } \right)n = lim\frac{{\left( {{n^2} - 1} \right) - \left( {{n^2} + 2} \right)}}{{\sqrt {{n^2} - 1}  + \sqrt {{n^2} + 2} }}\\
 = lim\frac{{ - 3n}}{{n\sqrt {1 - \frac{1}{{{n^2}}}}  + n\sqrt {1 + \frac{2}{{{n^2}}}} }} =  - \frac{3}{2}
\end{array}\)

Chọn C.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 4.15 trang 157 SBT Toán 11 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Bảo Bình

    Theo dõi (0) 0 Trả lời
  • lê lâm thùy mộng

    Theo dõi (0) 3 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Nguyễn Oanh
    Giải giúp em với mn oiw

    Theo dõi (0) 2 Trả lời
  • Nguyễn Trần Tiến
    Bài tập

    Theo dõi (0) 2 Trả lời
  • ADMICRO
    Phạm Như
    Giúp mình với

    Theo dõi (0) 3 Trả lời
NONE
OFF