OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 6 trang 15 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 15 SGK Toán 10 Chân trời sáng tạo tập 1

Cho các mệnh đề sau:

P: “Giá trị tuyệt đối của mọi số thực đều lớn hơn hoặc bằng chính nó”

Q: “Có số tự nhiên sao cho bình phương của nó bằng 10”

R: “Có số thực x sao cho \({x^2} + 2x - 1 = 0\)”

a) Xét tính đúng sai của mỗi mệnh đề trên.

b) Sử dụng kí hiệu \(\forall ,\exists \) để viết lại các mệnh đề đã cho.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

Mệnh đề \(\forall x \in M,P(x)\) đúng với mọi \({x_0} \in M\), P(x) là mệnh đề đúng.

Mệnh đề \(\exists x \in M,P(x)\) đúng nếu có \({x_0} \in M\),sao cho P(x) là mệnh đề đúng.

Lời giải chi tiết

a)

Mệnh đề P đúng, vì: \(\left| x \right| = \left\{ \begin{array}{l}x\quad \;\;(x \ge 0)\\ - x\quad (x < 0)\end{array} \right.\) nên \(\left| x \right| \ge x\).

Mệnh đề Q sai vì chỉ có các số \( \pm \sqrt {10} \) có bình phương bằng 10, nhưng \(\sqrt {10} \) và \( - \sqrt {10} \) đều không là số tự nhiên.

Mệnh đề R đúng vì \(x =  - 1 + \sqrt 2  \in \mathbb{R}\) thỏa mãn \({x^2} + 2x - 1 = 0.\)

b) Có thể viết lại các mệnh đề trên như sau:

P: “\(\forall x \in \mathbb{R},\;\left| x \right| \ge x\)”

Q: “\(\exists n \in \mathbb{N},{n^2} = 10\)”

R: “\(\exists x \in \mathbb{R},\;{x^2} + 2x - 1 = 0\)”

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 6 trang 15 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF