OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 3 trang 79 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 3 trang 79 SBT Toán 10 Chân trời sáng tạo tập 1

Để xác định chiều cao của một tòa nhà cao tầng, một người đứng tại điểm M, sử dụng giác kế nhìn thấy đỉnh tòa nhà với góc nâng \(\widehat {RQA} = 79^\circ \), người đó lùi ra xa một khoảng cách \(LM = 50\) m thì nhìn thấy đỉnh tòa nhà với góc nâng \(\widehat {RPA} = 65^\circ \). Hãy tính chiều cao của tòa nhà, biết rằng khoảng cách từ mặt đất đến ống ngắm của giác kế đó là \(PL = QM = 1,4\) m (hình 6)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 3

Phương pháp giải

+ Xác định chiều cao của nhà cao tầng

+ Xác định gGóc \(\widehat {AQR}\)

+ Áp dụng định lí sin vào tam giác APQ 

+ Xét tam giác AQR => AO

Lời giải chi tiết

Ta có chiều cao của nhà cao tầng là \(AO = AR + RO = AR + 1,4\)

Góc \(\widehat {AQR}\) là góc ngoài của tam giác APQ tại đỉnh suy ra \(\widehat {AQR} = \widehat {APQ} + \widehat {QAP} \Rightarrow \widehat {QAP} = \widehat {AQR} - \widehat {APQ} = 79^\circ  - 65^\circ  = 14^\circ \)

Áp dụng định lí sin vào tam giác APQ  ta có:

\(\frac{{PQ}}{{\sin \widehat {PAQ}}} = \frac{{AQ}}{{\sin \widehat {APQ}}} = \frac{{50}}{{\sin 14^\circ }} \Rightarrow AQ = \frac{{50}}{{\sin 14^\circ }}.\sin 65^\circ \)

Xét tam giác AQR ta có:

\(\frac{{AR}}{{\sin \widehat {AQR}}} = \frac{{AQ}}{{\sin \widehat {ARQ}}} = \frac{{\frac{{50}}{{\sin 14^\circ }}.\sin 65^\circ }}{{\sin 90^\circ }} \Rightarrow AR = \frac{{\frac{{50}}{{\sin 14^\circ }}.\sin 65^\circ }}{{\sin 90^\circ }}.\sin 79^\circ  \simeq 183,87\)

\( \Rightarrow AO \simeq 183,87 + 1,4 = 185,27\)

Vậy tòa nhà cao xấp xỉ 185,27 m

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 3 trang 79 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF