OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 1 trang 71 SGK Toán 10 Cánh diều tập 1 - CD

Giải bài 1 trang 71 SGK Toán 10 Cánh diều tập 1

Cho tam giác ABC có \(AB = 3,5;\;AC = 7,5;\;\widehat A = {135^o}.\) Tính độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng phần mười).

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 1

Phương pháp giải

Bước 1: Tính BC, bằng cách áp dụng định lí cosin trong tam giác ABC:

\({a^2} = {b^2} + {c^2} - 2bc.\cos A\)

Bước 2: Tính R, dựa vào định lí sin trong tam giác ABC:

\(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2.\sin A}}\)

Hướng dẫn giải

Áp dụng định lí cosin trong tam giác ABC ta có:

\(B{C^2} = A{C^2} + A{B^2} - 2AC.AB.\cos A\)

\(\begin{array}{l} \Leftrightarrow B{C^2} = 7,{5^2} + 3,{5^2} - 2.7,5.3,5.\cos {135^o}\\ \Leftrightarrow B{C^2} \approx 105,6\\ \Leftrightarrow BC \approx 10,3\end{array}\)

Áp dụng định lí sin trong tam giác ABC ta có: \(\frac{{BC}}{{\sin A}} = 2R\)

\( \Rightarrow R = \frac{{BC}}{{2.\sin A}} = \frac{{10,3}}{{2.\sin {{135}^o}}} \approx 7,3\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 1 trang 71 SGK Toán 10 Cánh diều tập 1 - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF