OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 51 trang 216 SGK Toán 10 NC

Bài tập 51 trang 216 SGK Toán 10 NC

Chứng minh rằng nếu \(\alpha  + \beta  + \gamma  = \pi \) thì:

\(\begin{array}{*{20}{l}}
\begin{array}{l}
a)\sin \alpha  + \sin \beta  + \sin \gamma \\
 = 4\cos \frac{\alpha }{2}\cos \frac{\beta }{2}\cos \frac{\gamma }{2}
\end{array}\\
\begin{array}{l}
b)\cos \alpha  + \cos \beta  + \cos \gamma \\
 = 1 + 4\sin \frac{\alpha }{2}\sin \frac{\beta }{2}\sin \frac{\gamma }{2}
\end{array}\\
\begin{array}{l}
c)\sin 2\alpha  + \sin 2\beta  + \sin 2\gamma \\
 = 4\sin \alpha \sin \beta \sin \gamma 
\end{array}\\
\begin{array}{l}
d){\cos ^2}\alpha  + {\cos ^2}\beta  + {\cos ^2}\gamma \\
 = 1 - 2\cos \alpha \cos \beta \cos \gamma 
\end{array}
\end{array}\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

a)

\(\begin{array}{l}
\sin \alpha  + \sin \beta  + \sin \gamma \\
 = \sin \alpha  + 2\sin \frac{{\beta  + \gamma }}{2}\cos \frac{{\beta  - \gamma }}{2}\\
 = \sin \alpha  + 2\sin \frac{{\pi  - \alpha }}{2}\cos \frac{{\beta  - \gamma }}{2}\\
 = 2\sin \frac{\alpha }{2}\cos \frac{\alpha }{2} + 2\cos \frac{\alpha }{2}\cos \frac{{\beta  - \gamma }}{2}\\
 = 2\cos \frac{\alpha }{2}\left( {\sin \frac{\alpha }{2} + \cos \frac{{\beta  - \gamma }}{2}} \right)\\
 = 2\cos \frac{\alpha }{2}\left[ {\sin \frac{{\pi  - \left( {\beta  + \gamma } \right)}}{2} + \cos \frac{{\beta  - \gamma }}{2}} \right]\\
 = 2\cos \frac{\alpha }{2}\left( {\cos \frac{{\beta  + \gamma }}{2} + \cos \frac{{\beta  - \gamma }}{2}} \right)\\
 = 4\cos \frac{\alpha }{2}\cos \frac{\beta }{2}\cos \frac{\gamma }{2}
\end{array}\)

b)

\(\begin{array}{l}
\cos \alpha  + \cos \beta  + \cos \gamma \\
 = 2\cos \frac{{\alpha  + \beta }}{2}\cos \frac{{\alpha  - \beta }}{2} + 1 - 2{\sin ^2}\frac{\gamma }{2}\\
 = 2\cos \left( {\frac{\pi }{2} - \frac{\gamma }{2}} \right)\cos \frac{{\alpha  - \beta }}{2} + 1 - 2{\sin ^2}\frac{\gamma }{2}\\
 = 1 + 2\sin \frac{\gamma }{2}\left( {\cos \frac{{\alpha  - \beta }}{2} - \sin \frac{\gamma }{2}} \right)\\
 = 1 + 2\sin \frac{\gamma }{2}\left( {\cos \frac{{\alpha  - \beta }}{2} - \cos \frac{{\alpha  + \beta }}{2}} \right)\\
 = 1 + 4\sin \frac{\alpha }{2}\sin \frac{\beta }{2}\sin \frac{\gamma }{2}
\end{array}\)

c)

\(\begin{array}{l}
\sin 2\alpha  + \sin 2\beta  + \sin 2\gamma \\
 = 2\sin \left( {\alpha  + \beta } \right)\cos \left( {\alpha  - \beta } \right) + 2\sin \gamma \cos \gamma \\
 = 2\sin \gamma \left[ {\cos \left( {\alpha  - \beta } \right) - \cos \left( {\alpha  + \beta } \right)} \right]\\
 = 4\sin \alpha \sin \beta \sin \gamma 
\end{array}\)

d)

\(\begin{array}{l}
{\cos ^2}\alpha  + {\cos ^2}\beta  + {\cos ^2}\gamma \\
 = \frac{{1 + \cos 2\alpha }}{2} + \frac{{1 + \cos 2\beta }}{2} + {\cos ^2}\gamma \\
 = 1 + \frac{1}{2}\left( {\cos 2\alpha  + \cos 2\beta } \right) + {\cos ^2}\gamma \\
 = 1 + \cos \left( {\alpha  + \beta } \right)\cos \left( {\alpha  - \beta } \right) + {\cos ^2}\gamma \\
 = 1 + \cos \gamma \left[ {\cos \gamma  - \cos \left( {\alpha  - \beta } \right)} \right]\\
 = 1 - \cos \gamma \left[ {\cos \left( {\alpha  + \beta } \right) + \cos \left( {\alpha  - \beta } \right)} \right]\\
 = 1 - 2\cos \alpha \cos \beta \cos \gamma 
\end{array}\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 51 trang 216 SGK Toán 10 NC HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Lê Nhật Minh

    Hôm qua làm kiểm tra 1 tiết Toán, mình giải không biết đúng hay sai nữa!

    Rút gọn biểu thức
    \(A=\frac{sinx-sin2x+sin3x}{cosx-cos2x+cos3x}\)

    Theo dõi (0) 1 Trả lời
  • Suong dem

    Làm toát mồ hôi mà vẫn không ra, giúp em vs!

    Tính theo GTLG của góc \(\alpha\)
    \(tan\left ( \frac{2017\pi}{2}-\alpha \right )\)

    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Đào Thị Nhàn

    Hôm qua làm kiểm tra 1 tiết Toán, mình giải không biết đúng hay sai nữa!

    Cho \(cos 2\alpha =-\frac{4}{5}\) với \(\frac{\pi}{2}< \alpha < \pi\). Tính giá trị của biểu thức: \(P=(1+tan\alpha )cos(\frac{\pi}{4}-\alpha )\)

    Theo dõi (0) 1 Trả lời
  • thanh hằng

    Hôm nay thầy em giao bài này về nhà mà em không có biết làm, mn giúp em vs!

    Tính giá trị của biểu thức \(P=(2cos2x-5)(3-2sin^2x)\) biết tanx = 2.

    Theo dõi (0) 1 Trả lời
  • ADMICRO
    Duy Quang

    Help me!

    Cho \(tan\alpha =\frac{1}{2}(\beta \in (0;\frac{\pi}{2}))\). Tính giá trị biểu thức: \(P=\frac{2sin\frac{\pi}{2}+3cos\frac{\alpha }{2}}{sin\frac{\alpha }{2}+2cos\frac{\alpha }{2}}+\frac{1}{\sqrt{5}}\)

    Theo dõi (0) 1 Trả lời
  • Nguyễn Thanh Hà

    Help me!

    Cho \(\alpha\) là góc thỏa \(sin\alpha =\frac{1}{4}\). Tính giá trị biểu thức \(A=(sin4\alpha +2sin2\alpha )cos\alpha\)

    Theo dõi (0) 1 Trả lời
NONE
OFF