OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Đặt điện áp \(u = 100\sqrt 2 \cos 2\pi ft\,\,\left( V \right)\) vào hai đầu đoạn mạch RLC nối tiếp, trong đó cuộn dây thuần cảm và \(\omega \) thay đổi được. Khi \(\omega = {\omega _1} = \sqrt {45} \,\,rad/s\) thì công suất tiêu thụ của mạch là lớn nhất. Khi tần số góc \({\omega _2}\) hoặc \({\omega _3}\) thì điện áp hiệu dụng hai đầu cuộn cảm bằng nhau là \(\dfrac{{500}}{{\sqrt 7 }}\,\,V\), biết \({\omega _2}^2 + 4{\omega _3}^2 = 225\). Khi \(\omega = {\omega _4}\) thì \({U_{L\max }}\). Giá trị của \({\omega _4}^2\) là?

  bởi Minh Tuyen 22/04/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Tần số để mạch có công suất tiêu thụ lớn nhất là: \({\omega _1} = \dfrac{1}{{\sqrt {LC} }} = \sqrt {45} \,\,\left( {rad/s} \right)\)

    Điện áp hiệu dụng giữa hai đầu cuộn cảm là:

    \(\begin{array}{l}{U_L} = \dfrac{{U.{Z_L}}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} \Rightarrow \dfrac{{500}}{{\sqrt 7 }} = \dfrac{{100.{Z_L}}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\\ \Rightarrow \dfrac{{25}}{7} = \dfrac{{{Z_L}^2}}{{{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}} \Rightarrow 25{R^2} + 25{\left( {{Z_L} - {Z_C}} \right)^2} = 7{Z_L}^2\\ \Rightarrow 18{Z_L}^2 + 25{R^2} + 25{Z_C}^2 - 50{Z_L}{Z_C} = 0\\ \Rightarrow 18{\omega ^2}{L^2} + 25{R^2} + \dfrac{{25}}{{{\omega ^2}{C^2}}} - \dfrac{{50L}}{C} = 0\\ \Rightarrow 18{\omega ^4}LC + \left( {25{R^2}{C^2} - 50LC} \right){\omega ^2} + 25 = 0\,\,\left( 1 \right)\end{array}\)

    Hai tần số cho cùng giá trị hiệu dụng \({U_L} \to \) phương trình (1) có 2 nghiệm \({\omega _2}^2,{\omega _3}^2\)

    Áp dụng định lí Vi – et cho phương trình (1), ta có:

    \({\omega _2}^2{\omega _3}^2 = \dfrac{{25}}{{18{L^2}{C^2}}} = \dfrac{{25}}{{18}}{\omega _1}^4 = \dfrac{{25}}{{18}}.{\left( {\sqrt {45} } \right)^4} = 2812,5\)

    Theo đề bài ta có hệ phương trình:

    \(\left\{ \begin{array}{l}{\omega _2}^2 + 4{\omega _3}^2 = 225\\{\omega _2}^2{\omega _3}^2 = 2812,5\end{array} \right. \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{\omega _2}^2 = 75\,\,\left( {ra{d^2}/{s^2}} \right)\\{\omega _3}^2 = 37,5\,\,\left( {ra{d^2}/{s^2}} \right)\end{array} \right.\\\left\{ \begin{array}{l}{\omega _2}^2 = 150\,\,\left( {ra{d^2}/{s^2}} \right)\\{\omega _3}^2 = 18,75\,\,\left( {ra{d^2}/{s^2}} \right)\end{array} \right.\end{array} \right.\)

    Điện áp hai đầu cuộn cảm đạt cực đại, ta có:

    \(\dfrac{2}{{{\omega _4}^2}} = \dfrac{1}{{{\omega _2}^2}} + \dfrac{1}{{{\omega _3}^2}} \Rightarrow \left[ \begin{array}{l}{\omega _4}^2 = 50\,\,\left( {ra{d^2}/{s^2}} \right)\\{\omega _4}^2 = \dfrac{{100}}{3}\,\,\left( {ra{d^2}/{s^2}} \right)\end{array} \right.\)  

      bởi Phạm Phú Lộc Nữ 22/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF