OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho mạch điện xoay chiều biến trở R, cuộn dây không thuần cảm và tụ điện C có điện dung thay đổi được.

Đặt điện áp xoay chiều \(u={{U}_{0}}\cos \omega t\) (\({{U}_{0}},\omega \) có giá trị dương, không đổi) vào hai đầu đoạn AN, mắc các vôn kế lí tưởng V1, V2, vào AM và MN, mắc oát kế để đo công suất toàn mạch. Thay đổi R từ 0 đến rất lớn, khi đó tổng số chỉ hai vôn kế cùng một thời điểm có giá trị lớn nhất là U1, số chỉ lớn nhất của oát kế là P1. Tháo toàn bộ nguồn và dụng cụ đo khỏi mạch rồi đặt điện áp đó vào hai đầu đoạn mạch MB, mắc các vôn kế lí tưởng V1, V2 vào MN và NB, mắc oát kế để đo công suất toàn mạch. Thay đổi C từ 0 đến rất lớn, khi đó tổng số chỉ hai vôn kế cùng một thời điểm có giá trị lớn nhất là U2, số chỉ lớn nhất của oát kế là P2. Biết \(\frac{{{U}_{1}}}{{{U}_{2}}}=0,299\) và giá trị \({{P}_{1}}=100W\). Giá trị P2 gần nhất với giá trị nào sau đây?

A. \(\frac{100}{\sqrt{3}}\text{W}\). 

B. \(\frac{50}{\sqrt{3}}\text{W}\).        

C. \(200\sqrt{3}\text{W}\).          

D. \(100\sqrt{3}\text{W}\).

  bởi Vũ Hải Yến 10/07/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Đáp án C

    Xét đoạn mạch AN,tức mạch gồm RLr mắc nối tiếp. Ta có giản đồ:

    Ta có: \(\tan \alpha =\frac{r}{{{Z}_{L}}}\).

    Từ giản đồ ta có: \(\frac{U}{\sin \left( 90{}^\circ +\alpha  \right)}=\frac{{{U}_{Lr}}}{\sin \gamma }=\frac{{{U}_{R}}}{\sin \beta }=\frac{{{U}_{Lr}}+{{U}_{R}}}{\sin \beta +\sin \gamma }\)

    \(\Rightarrow {{U}_{Lr}}+{{U}_{R}}={{U}_{1}}=\frac{U}{\sin \left( \alpha +90{}^\circ  \right)}\left( \sin \beta +\sin \gamma  \right)\)

    Lại có: \(\sin \beta +\sin \gamma =2\sin \frac{\beta +\gamma }{2}\cos \frac{\beta -\gamma }{2}=2\sin \left( 45-\frac{\alpha }{2} \right)\cos \frac{\beta -\gamma }{2}\)

    Do a không đổi \(\Rightarrow {{U}_{1\max }}\) khi \(\cos \frac{\beta -\gamma }{2}=1\) khi đó \({{U}_{1\max }}=\frac{U}{\sin \left( \alpha +90{}^\circ  \right)}2\sin \left( 45{}^\circ -\frac{\alpha }{2} \right)\)

    Xét đoạn mạch MB gồm LrC mắc nối tiếp

    Từ giản đồ ta có: \({{\left( {{U}_{C}}+{{U}_{Lr}} \right)}_{\max }}={{U}_{2\max }}=\frac{U}{\sin \alpha }2\sin \left( 90{}^\circ -\frac{\alpha }{2} \right)\)

    Lấy \(\frac{{{U}_{1}}}{{{U}_{2}}}=0,299\Rightarrow \frac{\sin \alpha }{\sin \left( \alpha +90{}^\circ  \right)}.\frac{\sin \left( 45{}^\circ -\frac{\alpha }{2} \right)}{\sin \left( 90{}^\circ -\frac{\alpha }{2} \right)}=0,299\Rightarrow \alpha =30{}^\circ \Rightarrow \tan \alpha =\frac{r}{{{Z}_{2}}}\Rightarrow {{Z}_{L}}=\sqrt{3}r\)

    Khi đó: \({{P}_{1\max }}=\frac{{{U}^{2}}}{2\sqrt{3}r};\text{ }{{P}_{2\max }}=\frac{{{U}^{2}}}{r}\) (cộng hưởng)

    Xét: \(\frac{{{P}_{1}}}{{{P}_{2}}}=\frac{r}{2\sqrt{3}r}=\frac{1}{2\sqrt{3}}\Rightarrow {{P}_{2}}=2\sqrt{3}{{P}_{1}}=2\sqrt{3}.100=200\sqrt{3}\text{W}\).

      bởi Anh Linh 10/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF