OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Với đường tròn tâm O, dây cung AB không đi qua tâm O. Gọi M là điểm chính giữa của cung nhỏ AB. Vẽ dây cung MC không đi qua tâm O cắt đoạn thẳng AB tại D (D khác A, D khác B). Đường thẳng vuông góc với AB tại D, cắt OC tại K.Chứng minh rằng tam giác KCD là tam giác đều.

Với đường tròn tâm O, dây cung AB không đi qua tâm O. Gọi M là điểm chính giữa của cung nhỏ AB. Vẽ dây cung MC không đi qua tâm O cắt đoạn thẳng AB tại D (D khác A, D khác B). Đường thẳng vuông góc với AB tại D, cắt OC tại K.Chứng minh rằng tam giác KCD là tam giác đều. 

  bởi Phạm Phú Lộc Nữ 12/07/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Nên ta có OM là đường trung trực của \(AB\;\;hay\;\;AB \bot OM.\)Ta có \(M\) là điểm chính giữa cung AB, suy ra cung  MA bằng cung MB, suy ra MA = MB (trong một đường tròn thì hai cung căng hai dây bằng nhau); Lại có OA = OB (bán kính của (O))

    Lại có \(KD \bot AB\;\;\left( {gt} \right)\)

    \( \Rightarrow KD//OM\) (từ vuông góc đến song song).

    \( \Rightarrow \widehat {CMO} = \widehat {CDK}\) (hai góc đồng vị).

    Ta có \(OC = OM = R \Rightarrow \Delta MOC\) cân tại O \( \Rightarrow \widehat {OMC} = \widehat {OCM}.\) (hai góc kề đáy).

    \( \Rightarrow \widehat {MCO} = \widehat {CDK}\left( { = \widehat {CMO}} \right) \Rightarrow \Delta KCD\) cân tại \(K.\)  (đpcm).

      bởi Bao Nhi 12/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF