OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Tìm giá trị lớn nhất của biểu thức M = x^2y^2 (x^2 + y^2)

Cho hai số x, y là số thực dương thỏa mãn x + y = 2. Tìm giá trị lớn nhất của biểu thức : M = x2y2 ( x2 + y2 )

  bởi Nguyễn Quang Minh Tú 21/01/2019
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • cm: ta có BĐT:\(\left(x+y\right)^2\ge4xy\)(khá quen thuộc)

    \(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=1\)(1)

    \(M=x^2y^2\left(x^2+y^2\right)=\frac{1}{2}xy.2xy.\left(x^2+y^2\right)\)

    áp dụng BĐT trên theo chiều ngược lại:(x,y dương)

    \(2xy\left(x^2+y^2\right)\le\frac{\left(x^2+2xy+y^2\right)^2}{4}=\frac{\left(x+y\right)^4}{4}=4\)

    do đó \(M\le\frac{1}{2}xy.4=2xy\)

    \(xy\le1\Rightarrow M\le2\)

    dấu = xảy ra khi x=y=1

      bởi Lê Thị Kim Hậu 21/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF