OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Ta có hình trụ có diện tích xung quanh bằng \(256\pi c{m^2}\) và bán kính đáy bằng \(\dfrac{1}{2}\) đường cao. Tính bán kính đáy và thể tích hình trụ.

Ta có hình trụ có diện tích xung quanh bằng \(256\pi c{m^2}\) và bán kính đáy bằng \(\dfrac{1}{2}\) đường cao. Tính bán kính đáy và thể tích hình trụ.

  bởi Nguyễn Lê Thảo Trang 12/07/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi R, h lần lượt là bán kính đáy và chiều cao của hình trụ.

    Vì bán kính đáy bằng \(\dfrac{1}{2}\) đường cao nên \(R = \dfrac{1}{2}h \Rightarrow h = 2R\)

    Khi đó ta có  \({S_{xq}} = 2\pi Rh = 2\pi .R.2R = 256\pi \)

    \(\Leftrightarrow {R^2} = 64 \Leftrightarrow R = 8\,\,\left( {cm} \right)\)

    \( \Rightarrow h = 2.8 = 16\,\,\left( {cm} \right)\)

    Vậy thể tích của khối trụ là \(V = \pi {R^2}h = \pi {.8^2}.16 = 1024\pi \,\,\left( {c{m^3}} \right)\).

      bởi Thúy Vân 12/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF