OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh rằng không tồn tại 1 đa thức với hệ số nguyên P(x) thỏa mãn P(1)=23 và P(23)=84

chứng minh rằng không tồn tại 1 đa thức với hệ số nguyên P(x) thỏa mãn P(1)=23 và P(23)=84

  bởi Lê Nguyễn Hạ Anh 14/02/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • mình nghĩ là làm như vầy, bạn xem thử nha

    ta thay p(1)=23 và p(23)=84 lần lượt vào p(x)=ax+b

    ta sẽ có: p(1)=1a+b=23

    p(23)=23a+b=84

    => -22a =-61 (BẠN GIẢI HỆ PT NHÉ)

    => a=61/22

    vì theo đề cho hệ số P(x) nguyên mà a=61/22( không nguyên)

    => không tồn tại một đa thức với hệ số nguyên P(x) thỏa mãn P(1)=23 và P(23)=84

      bởi Cao Nhã Uyên 14/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF