OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh rằng a^3/a^2+ab+b^2 + b^3/b^2+bc+c^2 + c^3/c^2+ca+a^2≥a+b+c/3

Cho các số thực dương a , b , c

Chứng minh rằng: \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)

  bởi Phạm Khánh Linh 22/02/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)

    \(\Leftrightarrow\frac{a^4}{a^3+a^2b+ab^2}+\frac{b^4}{b^3+b^2c+bc^2}+\frac{c^4}{c^3+c^2a+a^2c}\ge\frac{a+b+c}{3}\)

    \(\Leftrightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{a+b+c}{3}\)

    Áp dụng bất đẳng thức cộng mẫu số cho vế trái

    \(\Rightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+a^2c}\)

    \(\Rightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^3+a^2b+a^2c\right)+\left(b^3+b^2c+ab^2\right)+\left(c^3+c^2a+bc^2\right)}\)

    \(\Rightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)}\)

    \(\Rightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)

    Chứng minh rằng: \(\frac{a^2+b^2+c^2}{a+b+c}\ge\frac{a+b+c}{3}\)

    \(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

    Áp dụng bất đẳng thức Bunhiacopski cho 3 bộ số thực không âm

    \(\Rightarrow3\left(a^2+b^2+c^2\right)=\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)( đpcm )

    Vậy \(\frac{a^2+b^2+c^2}{a+b+c}\ge\frac{a+b+c}{3}\)

    \(\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{a^2+b^2+c^2}{a+b+c}\)

    \(\Rightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{a+b+c}{3}\)

    \(\Leftrightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\) ( đpcm )

      bởi Doremon Bé 22/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF