OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh hàm số y=căn x đồng biến

Cho hàm số \(y=f\left(x\right)=\sqrt{x}\)

a) Chứng minh hàm số đồng biến

b) Trong các biến A(4;2), B(2;1),C(9;3),D(8;\(2\sqrt{2}\)) điểm nào thuộc và điểm nào không thuộc đồ thị hàm số

  bởi minh dương 26/10/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Cho hàm số y = f(x) = \(\sqrt{x}\)

    a) TXĐ: D = \(\left\{x|x\ge0\right\}\), \(x_1\ne x_2\), \(x_1,x_2\in D\)

    \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\sqrt{x_1}-\sqrt{x_2}}{x_1-x_2}=\dfrac{x_1-x_2}{\left(x_1-x_2\right)\left(\sqrt{x_1}-\sqrt{x_2}\right)}\)

    \(=\dfrac{1}{\sqrt{x_1}-\sqrt{x_2}}>0\)

    Vậy hàm số \(y=f\left(x\right)=\sqrt{x}\) đồng biến

    b) Những điểm thuộc đồ thị hàm số là:

    A(4;2) , C(9;3), D(8;\(2\sqrt{2}\))

    Điểm B(2;1) không thuộc đồ thị hàm số

      bởi Nguyễn Minh Châu 26/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF