OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho mặt cầu (S) được gọi là ngoại tiếp hình lập phương ABCD.A’B’C’D’ nếu các đỉnh của hình laapoj phương đều thuộc mặt cầu (S). Biết hình lập phương có độ dài cạnh 2a, tính thể tích V của hình cầu ngoại tiếp hình lập phương đó.

A. \(V = 3\pi {a^3}.\)   

B. \(V = 4\sqrt 3 \pi {a^3}.\)   

C. \(V = \dfrac{{\sqrt 3 }}{2}\pi {a^3}.\)   

D. \(V = 3\sqrt 2 \pi {a^3}.\)

  bởi Thuy Kim 11/07/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Hình lập phương ABCD.A’B’C’D’ với I là tâm của hình lập

    phương suy ra I chính là tâm của mặt cầu (S). I là trung điểm của A’C.

    Từ đó ta có: \(R = IC = \dfrac{{A'C}}{2} = \dfrac{{\sqrt {AA{'^2} + A{C^2}} }}{2}\)\(\, = \dfrac{{\sqrt {AA{'^2} + A{B^2} + B{C^2}} }}{2} \)\(\,= \dfrac{{\sqrt {{a^2} + {a^2} + {a^2}} }}{2} = \dfrac{{a\sqrt 3 }}{2}\)

    Vậy \({V_{mc}} = \dfrac{4}{3}\pi {R^3} = \dfrac{4}{3}.\pi .{\left( {\dfrac{{a\sqrt 3 }}{2}} \right)^3} = \dfrac{4}{3}\pi \dfrac{{3\sqrt 3 {a^3}}}{8} = \dfrac{{\sqrt 3 \pi {a^3}}}{2}\)

    Chọn C.

      bởi Đào Thị Nhàn 12/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF