Tìm GTNN của biểu thức A=(2x+1/3)^4-1
a/Tìm GTNN của biểu thức A=\(\left(2x+\dfrac{1}{3}\right)^4-1\)
b/Tìm GTLN của biểu thức B=\(-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}+3\)
Câu trả lời (1)
-
vì \(\left(2^x+\dfrac{1}{3}\right)^4\) có mũ chẵn là 4 +> \(\left(2^x+\dfrac{1}{3}\right)^4\) > hoặc bằng 0 . Vậy GTNN của \(\left(2^x+\dfrac{1}{3}\right)^4\)= 0 .
vi GTNN cua \(\left(2^x+\dfrac{1}{3}\right)^4\)=> \(\left(2^x+\dfrac{1}{3}\right)^4\)-1 =0 -1=-1
vay GTNN cua \(\left(2^x+\dfrac{1}{3}\right)^4\)-1 =-1
b, vi \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) co mu chan la 2018 => \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) . hoặc bằng 0
Vậy GTLN của \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) = 0 .Vì \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) = 0 =>
\(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) +3=0+3=3
Vậy GTLN của \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\)+3=3
bởi Cao Thị Quỳnh Chi 09/01/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
22/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời