Chứng minh FH=FA=FD biết trên tia đối của tia BA lấy BE = BH
Cho tam giác ABD có ∠B = 2 ∠D, kẻ AH\(\perp\) BD (H\(\in\)BD). Trên tia đối của tia BA lấy BE = BH. Đường thẳng EH cắt AD tại F. Chứng minh: FH = FA = FD.
Câu trả lời (1)
-
\(\Delta BHE\) có: \(BE=BH\) nên \(\Delta BHE\) cân tại B
\(\Rightarrow\widehat{H_1}=\widehat{E}\) (*)
\(\widehat{ABD}\) là góc ngoài của \(\Delta BHE\) nên \(\widehat{ABD}=\widehat{H_1}+\widehat{E}\)
Từ (*) suy ra: \(\widehat{E}=\widehat{H_1}=\widehat{\dfrac{ABD}{2}}\Rightarrow\widehat{H_1}.2=\widehat{ABD}\)
Mà \(\widehat{ABD}=2.\widehat{D}\) nên \(\widehat{D}=\widehat{H_1}\)
Vì \(\widehat{H_1}=\widehat{H_2}\) (đối đỉnh) nên \(\widehat{H_2}=\widehat{D}\)
\(\Rightarrow\Delta HDF\) cân tại F
\(\Rightarrow FH=FD\left(1\right)\)
Lại có: \(\widehat{A_1}=\widehat{H_3}\) (cùng phụ 2 góc bằng nhau là \(\widehat{H_2}\) và \(\widehat{D}\) )\(\Rightarrow\Delta AFH\) cân tại F
\(\Rightarrow FA=FH\left(2\right)\)
Từ \(\left(1\right)và\left(2\right)\) ta suy ra: \(FH=FA=FD\)
bởi Ngọc ÁNh 28/03/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời