OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh nếu p là số nguyên tố lớn hơn 3 thì (p-1)(p+1) chia hết cho 24

1.CMR:Nếu p là số nguyên tố lớn hơn 3 thì (p-1)(p+1) chia hết cho 24
2. tìm UCLN(12n-1,30n+2)
3.Tìm số tự nhiên nhỏ nhất có đúng 17 ước dương.
4.CMR với mọi số nguyên dương a,b,c ta luôn có:
                \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

  bởi Nguyễn Minh Hải 31/12/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • 4.Đặt M = \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)với a,b,c \(\in\) N

    Ta có:\(\dfrac{a}{a+b}>\dfrac{a}{a+b+c}\)

    \(\dfrac{b}{b+c}>\dfrac{b}{a+b+c}\)

    \(\dfrac{c}{c+a}>\dfrac{c}{a+b+c}\)

    Suy ra:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}\)

    M > \(\dfrac{a+b+c}{a+b+c}\)

    M > 1

    Vậy M < 1 (1)

    Lại có:\(\dfrac{a}{a+b}< \dfrac{a+b}{a+b+c}\)

    \(\dfrac{b}{b+c}< \dfrac{b+c}{a+b +c}\)

    \(\dfrac{c}{c+a}< \dfrac{c+a}{a+b+c}\)

    Suy ra:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}+\dfrac{c+a}{a+b+c}\)

    M < \(\dfrac{a+b+b+c+c+a}{a+b+c}\)

    M < \(\dfrac{2\left(a+b+c\right)}{a+b+c}\)

    M < 2

    Vậy M < 2 (2)

    Từ (1) và (2) suy ra : \(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

      bởi Nguyễn Khánh Đoan 31/12/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF