OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm hệ số của x trong khai triển của biểu thức \((\sqrt[3]{x}-\frac{2}{\sqrt{x}})^{n}\) với x > 0

Làm toát mồ hôi mà vẫn không ra, giúp em vs!

Tìm hệ số của x trong khai triển của biểu thức \((\sqrt[3]{x}-\frac{2}{\sqrt{x}})^{n}\) với x > 0, biết \(n\in N\) thỏa mãn:

\(C^{7}_{n+1}+C^{7}_{n+2}=2C^{8}_{n+2}-C^{8}_{n+1}\)

  bởi Nguyễn Thanh Hà 08/02/2017
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Điều kiện \(n+1\geq 8\Leftrightarrow n\geq 7.\) Ta có: \(C^{7}_{n+1}+C^{7}_{n+2}=2C^{8}_{n+2}-C^{8}_{n+1}\)

    \(\Leftrightarrow C^{8}_{n+3}=2C^{8}_{n+2}\)

    \(\Leftrightarrow \frac{(n+3)!}{8!(n-5)!}=2.\frac{(n+2)!}{8!(n-6)!}\Leftrightarrow n=13\)

    Khi đó vì x > 0 nên

    \((\sqrt[3]{x}-\frac{2}{\sqrt{x}})^{13}=\sum ^{13}_{k=0}C^{k}_{13}(\sqrt[3]{x})^{13-k}(-\frac{2}{\sqrt{x}})^{k}=\sum_{k=0}^{13}.C^{k}_{13}(-2)^{k}(x)^{\frac{26-5k}{6}}\)

    Theo yêu cầu bài toán thì \(\frac{26-5k}{6}=1\Leftrightarrow k=4.\) Do đó hệ số của x là: \(16.C^{4}_{13}=11440\)

      bởi Nguyễn Hạ Lan 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF